БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)
- Название:Большая Советская Энциклопедия (МЕ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (МЕ) краткое содержание
Большая Советская Энциклопедия (МЕ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
r=r ост+АТ 2+ВТ 5(3)
где А и В — величины, не зависящие от Т . Член BT 5 связан с рассеянием электронов на тепловых колебаниях атомов, а член AT 2 — со столкновениями электронов друг с другом и даёт заметный вклад в сопротивление лишь у некоторых М., например у Pt. Однако закономерность (3) выполняется лишь приближённо.
У некоторых М. и металлидов при определённой температуре, называемой критической, наблюдается полное исчезновение сопротивления — переход в сверхпроводящее состояние (см. Сверхпроводимость ) . Критические температуры чистых металлов лежат в интервале от сотых долей К до 9 К (табл. 1).
Если металлический образец, по которому течёт ток, поместить в постоянное магнитное поле, то в М. возникают явления, обусловленные искривлением траекторий электронов в магнитном поле в промежутке между столкновениями ( гальваномагнитные явления ) . Среди них важное место занимают Холла эффект и изменение электросопротивления М. в магнитном поле ( магнетосопротивление ) . Влияние магнитного поля тем больше, чем больше длина свободного пробега l , т. е. чем ниже температура и чем меньше примесей в М. При комнатной температуре магнитное поле 10 7—10 5 э изменяет сопротивление М. лишь на доли %. При T £ 4 К в сверхчистых М. сопротивление может измениться во много раз. Зависимость электросопротивления М. от внешнего магнитного поля существенно зависит от характера энергетического спектра электронов, в частности от формы поверхности ферми. У многих металлических монокристаллов (Au, Cu, Ag и др.) наблюдается сложная анизотропия сопротивления в магнитном поле.
В магнитных полях ~ 10 4—10 5 э и при низких температурах у всех металлических монокристаллов наблюдается осциллирующая зависимость электросопротивления от магнитного поля (Шубникова — де Хааза эффект). Это явление — следствие квантования движения электронов в плоскости, перпендикулярной направлению магнитного поля. Как правило, квантовая осциллирующая зависимость в виде небольшой «ряби» наложена на обычную зависимость сопротивления от магнитного поля.
При нагревании М. до высоких температур наблюдается «испарение» электронов с поверхности М. ( термоэлектронная эмиссия ) . Число электронов, вылетающих в единицу времени, определяется законом: n~exp (—j/kT), где k — Больцмана постоянная, j — работа выхода электронов из М. (см. Ричардсона формула ) . Величина j различна у разных М. и зависит также от состояния поверхности. Эмиссия электронов с поверхности М. происходит также под действием сильных электрических полей ~10 7 в/см в результате туннельного просачивания электронов через сниженный полем потенциальный барьер (см. Туннельная эмиссия ) . В М. наблюдаются явления фотоэлектронной эмиссии, вторичной электронной эмиссии и ионно-электронной эмиссии. Перепад температуры вызывает в М. появление электрического тока или разности потенциалов (см. Термоэлектрические явления ) .
Тепловые свойства. Теплоёмкость М. (табл. 1) обусловлена как ионным остовом (решёточная теплоёмкость С р ), так и электронным газом (электронная теплоёмкость С э ). Хотя концентрация электронов проводимости в М. очень велика (см. выше) и не зависит от температуры, электронная теплоёмкость мала и у большинства М. наблюдается только при температурах ~ нескольких К. Возможность измерения С э связана с тем, что при уменьшении температуры С р убывает пропорционально T 3 , а С э~ Т. Для Cu: С э = 0,9×10 -4 RT , для Pd: С э= 1,6×10 -3 RT (R — газовая постоянная). Теплопроводность М. осуществляется главным образом электронами проводимости. Поэтому между удельными коэффициентами электропроводности и теплопроводности существует простое соотношение, называемое Видемана — Франца законом.
Взаимодействие М. с электромагнитными полями. Переменный электрический ток при достаточно высокой частоте течёт по поверхности М., не проникая в его толщу (см. Скин-эффект ) . Электромагнитное поле частоты w проникает в М. лишь на глубину скин-слоя толщиной d.
Например, для Cu при (w = 10 8 гц d = 6×10 -4 см. В таком слое поглощается незначительная часть электромагнитной энергии. Основная часть энергии переизлучается электронами проводимости и отражается (см. Металлооптика ) . В чистых М. при низких температурах длина свободного пробега электронов l часто превышает глубину d. При этом напряжённость поля существенно изменяется на длине свободного пробега, что проявляется в характере отражения электромагнитных волн от поверхности М. (аномальный скин-эффект).
Сильное постоянное магнитное поле существенно влияет на электродинамические свойства М. В М., помещенных в такое поле, при условии, если частота электромагнитного поля кратна частоте прецессии электронов проводимости вокруг силовых линий постоянного магнитного поля, наблюдаются резонансные явления (см. Циклотронный резонанс ) . При определённых условиях в толще М., находящегося в постоянном магнитном поле, могут распространяться слабо затухающие электромагнитные волны, т. е. исчезает скин-эффект. Электродинамические свойства М., помещенного в магнитное поле, сходны со свойствами плазмы в магнитном поле и являются одним из основных источников информации об электронах проводимости.
Для электромагнитных волн оптического диапазона М., как правило, практически непрозрачны и обладают характерным блеском (см. Отражение света, Зеркало ) . В поглощении света в видимом и ультрафиолетовом диапазонах некоторую роль играет внутренний фотоэффект. Отражение от поверхности М. плоскополяризованного света, падающего под произвольным углом, сопровождается поворотом плоскости поляризации и появлением эллиптической поляризации (см. Вращение плоскости поляризации ) . Это явление используется для определения оптических констант М.
Общая структура характеристических рентгеновских спектров М. и диэлектриков одинакова. Тонкая же структура линий, соответствующая квантовым переходам электронов из зоны проводимости на глубокие уровни, отражает распределение электронов проводимости по уровням энергии.
Магнитные свойства. Переходные металлы с недостроенными f- и d- электронными оболочками являются парамагнетиками. Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние (см. Магнетизм, Ферромагнетизм, Антиферромагнетизм, Кюри точка ) . Магнитное упорядочение существенно влияет на все свойства М., в частности на электрические свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфические черты.
Читать дальшеИнтервал:
Закладка: