БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)
- Название:Большая Советская Энциклопедия (ЭЛ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ) краткое содержание
Большая Советская Энциклопедия (ЭЛ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лит.: Электронаркоз в хирургии, Таш., 1966.
В. В. Сигаев.
Электронвольт
Электронво'льт,внесистемная единица энергии, равная энергии, приобретаемой частицей, несущей один элементарный заряд (заряд электрона) при перемещении в ускоряющем электрическое поле между двумя точками с разностью потенциалов 1 в. Обозначения: русское — эв, международное — eV.
1 эв = 1,60219×10 -19 дж. Применяются кратные единицы килоэлектронвольт ( кэв, keV), равный 10 3 эв, мегаэлектронвольт ( Мэв, MeV), равный 10 6 эв. Часто в эв выражают массу элементарных частиц, что основано на уравнении Эйнштейна Е = mc 2 , связывающем массу частицы т с её полной энергией Е; с — скорость света. Энергия, соответствующая одной атомной единице массы, равна (931,5016 ± 0,0026) Мэв.
Электроника
Электро'ника,наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации. Наиболее характерные виды таких преобразований — генерирование, усиление и приём электромагнитных колебаний с частотой до 10 12 гц, а также инфракрасного, видимого, ультрафиолетового и рентгеновского излучений (10 12—10 20 гц ) . Преобразование до столь высоких частот возможно благодаря исключительно малой инерционности электрона — наименьшей из ныне известных заряженных частиц. В Э. исследуются взаимодействия электронов как с макрополями в рабочем пространстве электронного прибора, так и с микрополями внутри атома, молекулы или кристаллической решётки.
Э. опирается на многие разделы физики — электродинамику, классическую и квантовую механику, физику твёрдого тела, оптику, термодинамику, а также на химию, металлургию, кристаллографию и другие науки. Используя результаты этих и ряда других областей знаний, Э., с одной стороны, ставит перед другими науками новые задачи, чем стимулирует их дальнейшее развитие, с другой — создаёт новые электронные приборы и устройства и тем самым вооружает науки качественно новыми средствами и методами исследования. Практические задачи Э.: разработка электронных приборов и устройств, выполняющих различные функции в системах преобразования и передачи информации, в системах управления, в вычислительной технике, а также в энергетических устройствах; разработка научных основ технологии производства электронных приборов и технологии, использующей электронные и ионные процессы и приборы для различных областей науки и техники.
Э. играет ведущую роль в научно-технической революции. Внедрение электронных приборов в различные сферы человеческой деятельности в значительной мере (зачастую решающей) способствует успешной разработке сложнейших научно-технических проблем, повышению производительности физического и умственного труда, улучшению экономических показателей производства. На основе достижений Э. развивается промышленность, выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислительной техники, систем управления технологическими процессами, приборостроения, а также аппаратуру светотехники, инфракрасной техники, рентгенотехники и др.
Историческая справка.Э. зародилась в начале 20 в. после создания основ электродинамики (1856—73), исследования свойств термоэлектронной эмиссии (1882—1901), фотоэлектронной эмиссии (1887—1905), рентгеновских лучей (1895—97), открытия электрона (Дж. Дж. Томсон, 1897), создания электронной теории (1892—1909). Развитие Э. началось с изобретения лампового диода (Дж. А. Флеминг, 1904), трёхэлектродной лампы — триода (Л. де Форест, 1906); использования триода для генерирования электрических колебаний (немецкий инженер А. Мейснер, 1913); разработки мощных генераторных ламп с водяным охлаждением (М. А. Бонч-Бруевич, 1919—25) для радиопередатчиков, используемых в системах дальней радиосвязи и радиовещания. Вакуумные фотоэлементы (экспериментальный образец создал А. Г. Столетов, 1888; промышленные образцы — немецкие учёные Ю. Эльстер и Г. Хейтель, 1910); фотоэлектронные умножители— однокаскадные (П. В. Тимофеев, 1928) и многокаскадные (Л. А. Кубецкий, 1930) — позволили создать звуковое кино, послужили основой для разработки передающих телевизионных трубок: видикона (идея предложена в 1925 А. А. Чернышевым ) , иконоскопа (С. И. Катаев и независимо от него В. К. Зворыкин, 1931—32), супериконоскопа (П. В. Тимофеев, П. В. Шмаков, 1933), суперортикона (двухсторонняя мишень для такой трубки была предложена советским учёным Г. В. Брауде в 1939; впервые суперортикон описан американскими учёными А. Розе, П. Веймером и Х. Лоу в 1946) и др. Создание многорезонаторного магнетрона (Н. Ф. Алексеев и Д. Е. Маляров, под руководством М. А. Бонч-Бруевича, 1936—37), отражательного клистрона (Н. Д. Девятков и другие и независимо от них советский инженер В. Ф. Коваленко, 1940) послужило основой для развития радиолокации в сантиметровом диапазоне волн; пролётные клистроны (идея предложена в 1932 Д. А. Рожанским, развита в 1935 советским физиком А. Н. Арсеньевой и немецким физиком О. Хайлем, реализована в 1938 американскими физиками Р. и 3. Варианами и др.) и лампы бегущей волны (американский учёный Р. Компфнер, 1943) обеспечили дальнейшее развитие систем радиорелейной связи, ускорителей элементарных частиц и способствовали созданию систем космической связи. Одновременно с разработкой вакуумных электронных приборов создавались и совершенствовались газоразрядные приборы ( ионные приборы ) , например ртутные вентили, используемые главным образом для преобразования переменного тока в постоянный в мощных промышленных установках; тиратроны для формирования мощных импульсов электрического тока в устройствах импульсной техники; газоразрядные источники света.
Использование кристаллических полупроводников в качестве детекторов для радиоприёмных устройств (1900—05), создание купроксных и селеновых выпрямителей тока и фотоэлементов (1920—1926), изобретение кристадина (О. В. Лосев, 1922), изобретение транзистора (У. Шокли, У. Браттейн, Дж. Бардин, 1948) определили становление и развитие полупроводниковой электроники. Разработка планарной технологии полупроводниковых структур (конец 50 — начало 60-х гг.) и методов интеграции многих элементарных приборов (транзисторов, диодов, конденсаторов, резисторов) на одной монокристаллической полупроводниковой пластине привело к созданию нового направления в Э. — микроэлектроники (см. также Интегральная электроника ) . Основные разработки в области интегральной Э. направлены на создание интегральных схем— микроминиатюрных электронных устройств (усилителей, преобразователей, процессоров ЭВМ, электронных запоминающих устройств и т. п.), состоящих из сотен и тысяч электронных приборов, размещаемых на одном полупроводниковом кристалле площадью в несколько мм 2 . Микроэлектроника открыла новые возможности для решения таких проблем, как автоматизация управления технологическими процессами, переработка информации, совершенствование вычислительной техники и др., выдвигаемых развитием современного общественного производства. Создание квантовых генераторов (Н. Г. Басов, А. М. Прохоров и независимо от них Ч. Таунс, 1955) — приборов квантовой электроники— определило качественно новые возможности Э., связанные с использованием источников мощного когерентного излучения оптического диапазона ( лазеров ) и построением сверхточных квантовых стандартов частоты.
Читать дальшеИнтервал:
Закладка: