Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предыдущие абзацы были написаны исключительно с целью выражения известных результатов в рамках фрактальной терминологии – мне думается, такое выражение поможет читателю яснее представить себе их значение. Тем не менее, следует еще раз подчеркнуть: называя величину D размерностью, мы тем самым допускаем, что многократно учащенные СББС слабо сходятся к некоему семейству фракталов, размерность которых совпадает с эмпирически наблюдаемым значением D . Физики на этот счет не испытывают никаких сомнений, однако привередливые математики настаивают на том, что на данный момент такое утверждение является не более чем предположением. В следующем разделе мы вкратце обрисуем направление, в котором может пойти доказательство упомянутого предположения.

Заметьте, мы вовсе не ожидаем, что фрактальный предел при учащении решетки окажется лишен пересечений, так как точки, в которых СББС «погружается» в свое отдаленное прошлое, становятся двойными точками. В самом деле, размерность множества двойных точек в этом случае положительна, (4−E)3>0 . Мы, однако, можем ожидать, что тройных точек не будет, поскольку размерность их множества равна max (0,2−E)=0 .

Последовательности, сильно сходящиеся к фракталам, несравненно легко поддаются изучению (как аналитически, так и с точки зрения вычислений), нежели СББС на четырех решетках. Следовательно, удобно было бы – если можно так выразиться – «оттенить» СББС некоторой последовательностью, благословенной обыкновенно (т.е. сильно) сходящимися приближениями. Этой цели можно достичь, используя предложенные мною «сквиг – кривые» (см. главу 24). Поразительно, но размерность наименее изощренных и наиболее изотропных сквиг - кривых оказывается чрезвычайно близка к значению D=4/3 , характерному для плоских СББС. Еще одна «тень» - броуновское движение без самопересечений, определяемое на рис. 341 как граница оболочки ограниченного броуновского следа. Вспомним, что размерность этой границы также составляет D=4/3 . Едва ли это просто совпадение – скорее, намек на возможность углубить наши знания о структуре плоскости.

В этом месте было бы интересно отступить немного в сторону и посмотреть, соответствует ли случайное блуждание без самопересечений космологическому принципу (см. главу 22). На первых этапах построения не наблюдается этого соответствия. Скорее всего, преобладающим окажется установившееся условно космографическое состояние (однако мне не известно, пытался ли кто-нибудь доказать это).

РЕНОРМ – ГРУППОВОЙ ПОДХОД

Аналитическое изучение масштабной инвариантности в решеточных физических системах (опирающееся на традиции, отличные от тех, каким следую я) полагается зачастую на один весьма могущественный инструмент, который называется (ошибочно, кстати) «методом ренорм – групп (РГ)». В качестве дополнительного источника рекомендую весьма доступный обзор от самого автора метода, К. Уилсона, [604]. Когда один из предыдущих вариантов настоящего Эссе находился еще в стадии предпечатной подготовки – причем в то же время готовилась к печати одна из ранних статей по РГ, - у меня состоялся разговор с Х. Г. Каленом, который привлек мое внимание к очевидному концептуальному сродству между ними.

Чтобы рассмотреть это сродство более подробно, я предлагаю читателю поразмыслить над некоторыми цитатами из Уилсона ([603], c. 774): а) «Ключевой особенностью статистического континуального предела является отсутствие характеристических масштабов длины, энергии или времени»; б) «[Метод РГ - это] инструмент, который мы используем для изучения статистического континуального предела … [Дополнительная гипотеза об универсальности] также имеет аналог в случае обыкновенной производной. Как правило, существует много конечно – разностных аппроксимаций для производной»; в) «Мы все еще очень далеки от понимания простой и в то же время явно структурированной природы производной»; г) «Расходящийся интеграл есть типичный … симптом задачи, не имеющей характеристического масштаба»; д) «[Ранняя] теория ренорм – групп … не рассматривает расходимостей в квантовой электродинамике …. Хуже всего [в ней] то, что … это чисто математический метод для вычитания расходящихся частей интегралов»; е) «Главной физической основой ренорм – группового подхода … является существование каскадного эффекта …. [Первой] основной особенностью каскадной картины является ее масштабная инвариантность»; ж) «[Вторая основная особенность - это] усиление либо ослабление».

Теперь кое-какие комментарии. В цитате (а) утверждается, что и РГ, и фракталы предназначены для решения практических задач одного класса, а в цитате (г) – что в процессе решения они сталкиваются, прежде всего, с одной и той же проблемой. Цитата (б) становится гораздо более точной, если применить ее к теории фракталов. Высказанное в цитате (в) сожаление во фрактальном контексте лишено оснований: в настоящее время в нашем распоряжении имеется простая и в то же время структурированная замена производной, первым элементом которой является фрактальная размерность. Цитата (г), несомненно, принесла читателю нашего эссе радость узнавания: главу 5 мы начали с доказательства расходимости интеграла, который, в теории, должен был бы дать нам длину береговой линии. В других ситуациях мы смиряемся и с бесконечной дисперсией, и с бесконечным математическим ожиданием, и с бесконечной вероятностью (например, когда имеем дело с распределением Pr(U>u)=u −D при 0 , хотя и знаем, что 0 −D =∞ ). Цитата (д) наполняет нас ощущением покоя и безопасности: уж мы-то всегда сможем избежать расходимостей, не прибегая для этого к чисто математическим методам. Цитата (е) также выглядит вполне знакомой.

В итоге не остается никаких сомнений в том, что и РГ, и фракталы ведут свое происхождение из одного источника и составляют, как выясняется, две стороны одной монеты, аналитическую и геометрическую. Однако фрактального аналога для цитаты (ж) мы так и не нашли, следовательно, параллелизм нельзя считать полным.

Теория РГ дает нам такую замечательную вещь, как гамильтониан неподвижной точки, H 0 . Быть физиком – значит полагать, что из гамильтониана H физической системы, в принципе, выводится все, что вообще возможно узнать о структуре этой системы. Если это так, то должна существовать возможность использовать гамильтонианы и для получения совместных распределений вероятностей различных случайных фигур. Из конечно – перенормированного гамильтониана H наверняка можно вывести распределения фигур, построенных на частой решетке, а из гамильтониана неподвижной точки H 0 - распределения предельных фигур (и, в особенности, их размерности D ). Здесь вырисовывается целая исследовательская программа, которую, возможно, будет сложно реализовать, но которая, я уверен, приведет к желаемым результатам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x