В. Днищенко - 500 схем для радиолюбителей. Дистанционное управление моделями
- Название:500 схем для радиолюбителей. Дистанционное управление моделями
- Автор:
- Жанр:
- Издательство:Наука и техника
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-94387-358-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Днищенко - 500 схем для радиолюбителей. Дистанционное управление моделями краткое содержание
В данной книге представлены схемные решения СХЕМ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ МОДЕЛЯМИ. Приводимого краткого описания вполне достаточно для самостоятельного изготовления понравившейся конструкции.
Изготовление моделей само по себе очень увлекательное занятие. Но наибольший интерес представляет изготовление именно управляемых моделей. Они давно получили широкое распространение в Японии, США и Европе. А в России моделирование делает первые шаги: создаются клубы любителей, появляются магазины, торгующие готовыми комплектами (модель и система управления)… Однако фирменные изделия недешевы, да и трудно отказать в себе удовольствии самостоятельно изготовить некоторые элементы и даже комплект целиком!
Данная книга уникальна. Она познакомит читателя с принципами функционирования и практической схемотехникой. Все рассмотренные конструкции выполнены на современной элементной базе, схемы сопровождаются подробными описаниями, рисунками печатных плат, рекомендациями по сборке и настройке.
Книга рассчитана как для начинающих, так и на «продвинутых» радиолюбителей, увлекающихся практической радиоэлектроникой.
500 схем для радиолюбителей. Дистанционное управление моделями - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Дроссель Др1 предназначен для обеспечения замыкания на корпус цепи протекания низкочастотных токов разностной частоты. Эти колебания далее отфильтровываются П-образным ФНЧ, состоящим из резистора R2 и конденсаторов С7 и С9. Левый по схеме вывод конденсатора С7 соединен по низкой частоте с корпусом через малое для этих частот сопротивление катушки L2 и блокировочный конденсатор С13.
Низкочастотные колебания с выхода фильтра через разделительный конденсатор С10 поступают на первую ступень УНЧ, собранную на транзисторе VT2, микросхемы. Элементы R3, R4, R5 и C11 обеспечивают выбор рабочей точки транзистора и ее термостабилизацию. Коллекторный ток транзистора не превышает 200–250 мкА, что минимизирует собственные шумы каскада, влияющие на итоговую чувствительность приемника. Модулирующий усилитель (МУ) микросхемы использован в качестве второй ступени УНЧ. Его коэффициент усиления задается резистором R7.
Детали и конструкция
Печатная плата приемника выполнена из одностороннего стеклотекстолита, ее чертеж приведен на рис. 5.55.

Рис. 5.55. Печатная плата
Катушки L1—L3 намотаны на одинаковых каркасах диаметром 5 мм с подстроечными сердечниками из карбонильного железа. Можно применить и другие каркасы диаметром 4–9 мм и сердечники из феррита марки 15—100 ВЧ, однако в этом случае придется корректировать число витков и установочные размеры катушек на печатной плате. Катушка L1 содержит 9 витков провода диаметром 0,25 мм. Отвод сделан от третьего витка. L2 такая же, но отвод выполнен от шестого витка. Начала катушек обозначены на схеме точками. Катушка L3 намотана проводом диаметром 0,15 мм и содержит 20 витков. Дроссель Др1 — стандартный, марки ДМ, на 50–68 мкГн. Его можно заменить самодельным, намотав 25–30 витков любого провода на кольце из феррита 400НН с внешним диаметром 8—10 мм. Катушки L1 и L2 обязательно должны быть снабжены экранами.
Смесительные диоды лучше использовать типа КД514, однако, с небольшим снижением чувствительности, подойдут и КД503А. Устанавливать на плату их придется вертикально.
Конденсаторы C1—С9 должны быть керамическими, С10 и С12 — любого типа, a C11 и С13 — электролитические на напряжение 10 В. Антенна приемника — отрезок провода не менее 15 см. Кварцевый резонатор должен иметь частоту f c/2, где f с— желаемая частота приема, лежащая в диапазоне 26–32 МГц.
На печатной плате предусмотрено место для установки стабилизатора DA2 и резистора R0, отсутствующих на принципиальной схеме. Стабилизатор КР1170ЕН5(6) устанавливается при питании приемника от автономного источника. Резистор R0 может понадобиться при настройке гетеродина.
Настройка
Настройку целесообразно начать с установки режима транзистора VT2 по постоянному току. Контролируя высокоомным вольтметром напряжение на выводе 9 микросхемы, подбором величины R4 сделать его равным 2,2–2,5 В.
Далее необходимо подать на вход приемника через конденсатор емкостью 0,01 мкФ сигнал амплитудой 100–300 мкВ с выхода ГСС, настроив его на рабочую частоту приемника. Внутренняя модуляция в генераторе должна быть отключена. С помощью осциллографа убедится в наличии генерации гетеродина, контролируя колебания либо на 14-ом, либо на 15-ом выводах микросхемы. При исправных деталях амплитуда высокочастотных колебаний на них должна быть соответственно равна примерно 120 и 180 мВ.
Переключить осциллограф на выход приемника и небольшими изменениями частоты работы ГСС добиться появления на экране синусоидальных колебаний разностной частоты 1–3 кГц. Вращением сердечников катушек L1 и L2 настроить УРЧ в резонанс по максимуму амплитуды наблюдаемых колебаний. Для этого потребуется постепенное уменьшение сигнала с выхода ГСС. Для получения максимальной чувствительности можно попробовать подобрать величину резистора R1 в диапазоне 47—220 кОм.
На чувствительность влияет также амплитуда гетеродинного напряжения. Подобрать оптимальную можно, переключив нижний конец конденсатора С8 с вывода 14 на вывод 15 (на плате это уже сделано) и изменяя амплитуду колебаний гетеродина с помощью переменного резистора. Переменный резистор на 15 кОм необходимо соединить последовательно с постоянным на 330 Ом и короткими проводами присоединить к соответствующим точкам платы (R0 на печатной плате).
Вращением движка потенциометра добиться максимальной амплитуды наблюдаемого выходного сигнала. Измерив суммарное сопротивление вспомогательных резисторов, установить на плату ближайший по номиналу постоянный резистор.
Может оказаться, что для конкретной пары смесительных диодов максимальная чувствительность получится при снятии гетеродинного напряжения с вывода 14 микросхемы. В этом случае необходимо сделать соответствующие изменения на печатной плате. Поскольку выводы 14 и 15 располагаются рядом, это не составит никакого труда.
Из теории известно, что различные способы передачи импульсных сигналов обладают и различной помехозащищенностью. Так, при равной энергии сигналов и отношении «сигнал/шум» на выходе приемника равном 20, вероятность ошибки приема двоичного сигнала при амплитудной манипуляции составляет 0,01, при частотной манипуляции — 0,001, а при фазовой — 0,00001 [14].
Очевидно, что наилучшей является фазовая манипуляция, но ее практическая реализация затруднена необходимостью точного знания на приемной стороне начальной фазы принимаемого сигнала. Частотная модуляция достаточно просто реализуется современными средствами. Хорошо разработана и схемотехника приемников ЧМ-сигналов. Можно считать частотную манипуляцию наиболее приемлемой для использования в аппаратуре радиоуправления.
5.5.1. Приемник на ИМС К174УР7 со смесителем на полевом транзисторе
Принципиальная схема
Приемник (рис. 5.56) представляет собой супергетеродин с однократным преобразованием частоты.

Рис. 5.56. Принципиальная схема приемника
Гетеродин собран на транзисторе VT1 и никаких особенностей не имеет. Смеситель реализован на двухзатворном полевом транзисторе VT2, нагрузкой которого является пьезоэлектрический фильтр ZQ2. Такие фильтры имеют паразитную полосу пропускания в области частот выше резонансной настройки. Для ее подавления используется колебательный контур в стоковой цепи, настроенный на промежуточную частоту. Подобное решение ощутимо заметно отношение «сигнал/шум» на выходе приемника.
Читать дальшеИнтервал:
Закладка: