Давид Ласерна - Эйнштейн. Теория относительности. Пространство – это вопрос времени.

Тут можно читать онлайн Давид Ласерна - Эйнштейн. Теория относительности. Пространство – это вопрос времени. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Де Агостини, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
Давид Ласерна - Эйнштейн. Теория относительности. Пространство – это вопрос времени.

Давид Ласерна - Эйнштейн. Теория относительности. Пространство – это вопрос времени. краткое содержание

Эйнштейн. Теория относительности. Пространство – это вопрос времени. - описание и краткое содержание, автор Давид Ласерна, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.

Эйнштейн. Теория относительности. Пространство – это вопрос времени. - читать онлайн бесплатно полную версию (весь текст целиком)

Эйнштейн. Теория относительности. Пространство – это вопрос времени. - читать книгу онлайн бесплатно, автор Давид Ласерна
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Результат этого опыта пробудил любопытство в Андре Мари Ампере 17751836 - фото 5

Результат этого опыта пробудил любопытство в Андре Мари Ампере (1775-1836), который выяснил, что электрические токи также могут взаимодействовать, притягиваться и отталкиваться благодаря силам магнетической природы. Как и Кулон, к своим открытиям Ампер пришел с помощью математических уравнений, в которых связывал величины, доступные для наблюдения в любой лаборатории.

На первый взгляд эти законы не предполагали никаких особо сложных теоретических построений. Ученые-физики, исследуя окружающий их универсум, со временем собрали небольшое количество принципов и идей, которых, казалось, было вполне достаточно для того, чтобы представить полную, точную и логичную картину мира. С одной стороны, существовали точечные частицы, которые взаимодействовали между собой при помощи центральных сил, то есть сил, направленных вдоль прямой линии, соединяющей точечные массы. Такое взаимодействие происходило мгновенно и на расстоянии. С другой стороны, существовали волны, которые распространялись в материальной среде, состоящей из частиц, взаимодействующих между собой.

Как мы видим, ученые, анализируя реальность, опирались на образы, взятые из повседневной жизни: камень, брошенный в пруд (частица), и круги, появляющиеся от него на поверхности (волны). Однако, как бы ни были знакомы человеческому воображению эти волны и частицы, сама идея мгновенного действия на расстоянии была довольно странной. «Вне физики,- говорил Эйнштейн, – наш разум не знает никаких сил, которые оказывали бы действие на расстоянии». Похожую критику уже вызывала ньютоновская формулировка закона тяготения, которая описывала с математической точностью все эффекты, но умалчивала об их причине. Ответ самого Ньютона на подобные упреки известен: «Hypotheses non jingo» – «Я не выдумываю гипотез».

Восхищение, которого заслуживал труд Ньютона, не могло заслонить собой некоторую неловкость перед вытекающими из него выводами. Следуя логике рассуждений ученого, оказывается, что мы могли бы отправлять мгновенные послания на другой конец планеты, придав движение некой массе: ее движение изменило бы расстояние между ней и нами, а вместе с этим и силу, действующую на любое тело на Земле. Аппарат с достаточной чувствительностью должен был бы уловить это воздействие, а разные изменения силы можно было бы организовать по принципу языка Морзе.

Мессия и апостол

Теория центральных сил начала давать трещины, когда опыты показали, что электромагнитные взаимодействия зависят не только от расстояния, но также от скорости и ускорения. Если заряды находились в состоянии покоя, классическая схема работала отлично, но как только они начинали двигаться, величины в уравнениях умножались, а вектора силы отклонялись от прямой, соединяющей частицы (см. рисунок).

Вектора сил между двумя зарядами в статическом положении слева и в динамике - фото 6

Вектора сил между двумя зарядами, в статическом положении (слева) и в динамике (справа). В первом случае вектор силы по отношению к каждому из зарядов совпадает с вектором соединяющей их прямой (Felect). Когда заряды приобретают скорость (v4 и v2 ), появляется магнитная сила (Fmag), перпендикулярная вектору скорости. Равнодействующая сила (Ftotal), действующая на каждый из зарядов, то есть сумма электрической и магнитной сил, не совпадает по своему вектору с прямой линией, соединяющей оба заряда.

Постепенно стало ясно, что существующая система понятий терпит фиаско и не способна описать только что открытые законы. Было необходимо найти новые инструменты. Английский ученый Майкл Фарадей (1791-1867) первым сумел увидеть невероятную экспериментальную картину, созданную Кулоном, Ампером и Эрстедом, с подходящего угла зрения.

Фарадей был выдающимся человеком во многих смыслах. Он вырос в такой бедности, которая не позволяет мечтать ни о каких научных достижениях. Тем не менее, работая переплетчиком, юноша выучился химии и физике – он просто читал все те книги, которые попадали ему в руки.

Сегодня более 99% электроэнергии в мире производится на атомных, тепловых, водных, ветровых, приливных и других электростанциях. Все они работают на базе генераторов тока, в основе которых лежит электромагнитная индукция – явление, открытое и описанное Фарадеем. 17 октября 1831 года он сделал в своем дневнике запись о том, что если рядом с проводом поместить магнит, то в проводе появится электрический ток. Это открытие замыкало круг, начатый Эрстедом: когда-то в Дании электрический ток заставил двигаться намагниченную стрелку компаса, а теперь в подвале Королевского института Великобритании, где ставил свои опыты Фарадей, движение магнита порождало электрический ток.

Тот же Фарадей подобрал ключ к закрытому замку современной теоретической физики – им стало понятие поля. Его можно ясно себе представить, если посмотреть на рисунок, который образуют железные стружки вокруг полюсов магнита или вблизи электрического тока. Однако этот простой эксперимент влечет целую вереницу вопросов. Какой силе подчиняются металлические стружки? На что ориентированы так называемые силовые линии, по формулировке Фарадея – завихрения вокруг зарядов и полюсов магнита?

Эти нечеткие фигуры навсегда изгнали из научного обихода ньютоновское понятие центральных сил. Эйнштейн пытался восстановить ход мысли Фарадея:

[…] должно быть, благодаря верному инстинкту, он почувствовал, что все объяснения электромагнитных явлений с помощью взаимодействий электрических частиц на расстоянии идут по ложному, искусственному пути. Каким образом разбросанные по листу бумаги железные стружки, каждая из них, узнали о существовании отдельных электрических частиц, блуждающих в находящемся рядом проводнике? Все, казалось, наводило на мысль о том, что совокупность этих частиц и создавала в окружающем пространстве некое состояние, которое, в свою очередь, влияло на порядок расположения стружек. Если понять геометрическую структуру этих пространственных рисунков, которые сегодня называют полями, и законы их взаимного влияния, можно найти ключ к секрету таинственных электромагнитных взаимодействий.

Электромагнитный синтез

Для того чтобы создать модель поля, нужно определить каждую из точек пространства с помощью математического значения. Если это будут некоторые числовые параметры, то мы будем иметь дело со скалярным полем. К примеру, такое поле описывает распределение температур в твердом теле или карту атмосферного давления. Если, помимо числа, к каждой точке пространства добавить еще и вектор, мы получим векторное поле. Классическими примерами такого поля являются схема распределения скоростей в жидкости или, снова говоря о метеорологии, карта ветров в определенном регионе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Давид Ласерна читать все книги автора по порядку

Давид Ласерна - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эйнштейн. Теория относительности. Пространство – это вопрос времени. отзывы


Отзывы читателей о книге Эйнштейн. Теория относительности. Пространство – это вопрос времени., автор: Давид Ласерна. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x