Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс

Тут можно читать онлайн Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс - бесплатно ознакомительный отрывок. Жанр: Математика. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Геометрия: Планиметрия в тезисах и решениях. 9 класс
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс краткое содержание

Геометрия: Планиметрия в тезисах и решениях. 9 класс - описание и краткое содержание, автор Андрей Павлов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.

Материалы пособия соответствуют учебной программе школьного курса геометрии.

Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс - читать онлайн бесплатно ознакомительный отрывок

Геометрия: Планиметрия в тезисах и решениях. 9 класс - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Андрей Павлов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

126. В остроугольном треугольнике ABC из вершин А и С на стороны ВС и АВ опущены высоты АР и CQ. Известно, что площадь треугольника ABC равна 18, площадь треугольника BPQ равна 2, а длина отрезка PQ равна 2?2. Вычислите радиус окружности, описанной около треугольника ABC. (3)

2.6. Задачи на вписанные и описанные четырёхугольники

Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны.

Если около четырёхугольника можно описать окружность, то суммы противоположных углов равны 180°.

Примеры решения задач

127. Известно, что в трапецию ABCD с основаниями AD и ВС можно вписать окружность и около неё можно описать окружность, EF – её средняя линия. Известно, что АВ + CD + EF = 18. Найдите периметр трапеции (рис. 188). (1)

Рис 188 Решение Так как в трапецию можно вписать окружность то Поскольку - фото 374

Рис. 188.

Решение. Так как в трапецию можно вписать окружность, то

Поскольку около трапеции можно описать окружность то АВ CD Пусть АВ CD - фото 375

Поскольку около трапеции можно описать окружность, то АВ = CD. Пусть АВ = CD = а; тогда из (1) следует AD + ВС = 2а и

По условию АВ CD EF 18 тогда с учетом 2 получаем а а а 18 а - фото 376

По условию АВ + CD + EF = 18; тогда с учетом (2) получаем: а + а + а = 18; а = 6. Периметр трапеции PABCD = АВ + CD + AD + BC = 2(АВ + CD) = 4а = 24.

Ответ: 24.

128. Около окружности с диаметром 15 см описана равнобедренная трапеция с боковой стороной, равной 17 см. Найдите основания трапеции (рис. 189). (2)

Рис 189 Решение Очевидно что высота трапеции равна диаметру окружности - фото 377

Рис. 189.

Решение. Очевидно, что высота трапеции равна диаметру окружности. Высота ВК = 15 см; из прямоугольного треугольника АВК

Пусть BС х тогда AD 8 х 8 х 16 Так как в трапецию вписана - фото 378

Пусть BС = х, тогда AD = 8 + х + 8 = х + 16. Так как в трапецию вписана окружность, то AD + ВС = АВ + CD; х + 16 + х = 17 + 17; х = 9 см; AD = 9 + 16 = 25 см.

Ответ: 9 см; 25 см.

Задачи для самостоятельного решения

129. Четырёхугольник ABCD описан около окружности с центром О. Найдите сумму углов АОВ и COD. (1)

130. Определите площадь круга, вписанного в прямоугольную трапецию с основаниями а и b. (2)

131. Длины боковых сторон трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит её на две части, отношение площадей которых равно 5/11. Найдите длины оснований трапеции. (3)

2.7. Задачи на вписанные углы

Вписанный в окружность угол равен половине центрального угла, опирающегося на ту же дугу.

Примеры решения задач

132. Найдите ?ТОК, если О – центр окружности и ?ТЕК = 120° (рис. 190).(1)

Рис 190 Решение Так как вписанный угол ТЕК равен половине центрального угла - фото 379

Рис. 190.

Решение. Так как вписанный угол ТЕК равен половине центрального угла, опирающегося на ту же дугу, то

Ответ 120 133 Дан правильный 30угольник А1А2 А30 с центром О Найдите - фото 380

Ответ: 120°

133. Дан правильный 30-угольник А1А2 ... А30 с центром О. Найдите угол между прямыми ОА3 и А1А4 (рис. 191). (2)

Рис 191 Решение Так как многоугольник А1А2 A30 правильный то А3ОА4 - фото 381

Рис. 191.

Решение. Так как многоугольник А1А2 ... A30 – правильный, то ?А3ОА4 = 360°/30 = 12°. Далее, ?А3А1А4 = 1/2 ?А3ОА4 = 6° (вписанный угол, опирающийся на дугу А3А4). ?А1ОА3 = 2 ? 12° = 24°;

Требуемый нам угол х является внешним углом к треугольнику А3А1В Так как - фото 382

Требуемый нам угол х является внешним углом к треугольнику А3А1В. Так как внешний угол треугольника равен сумме внутренних углов, с ним не смежных, то х = 6° + 78° = 84°.

Ответ: 84°.

134. В окружность вписан четырёхугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке Е. Прямая, проходящая через точку Е и перпендикулярная к АВ, пересекает сторону CD в точке М. Доказать, что ЕМ – медиана треугольника CED, и найти её длину, если AD = 8 см, АВ = 4 см и ?CDB = ? (рис. 192). (3)

Рис 192 Решение Обозначим через К точку пересечения прямых АВ и ЕМ - фото 383

Рис. 192.

Решение. Обозначим через К точку пересечения прямых АВ и ЕМ. Поскольку углы CDB и CAB опираются на одну и ту же дугу ВС, то ?CAB = ?CDB = ?. Из равенств ?DCE + CDB = ?/2, ?КЕА + ?САВ = ?/2, следует, что ?DCE = ?КЕА = ?СЕМ. Но это означает, что треугольник СЕМ равнобедренный, т. е. СМ = ЕМ. Далее, ?MED = ?/2 – ?СЕМ = ?/2 – (?/2 – ?) = ?CDB.

Итак, треугольник EMD равнобедренный, или DM = ЕМ. Этим доказано, что СМ = DM или что ЕМ – медиана треугольника CED.

Из прямоугольного треугольника ABE находим

АЕ = АВ ? cos?ЕАВ = АВ ? cos?CAB = 4 ? cos ?.

Далее, из прямоугольного треугольника AED по теореме Пифагора получаем

и наконец Ответ Задачи для самостоятельного решения 135 Окружности с - фото 384

и, наконец,

Ответ Задачи для самостоятельного решения 135 Окружности с центрами О и О1 - фото 385

Ответ:

Задачи для самостоятельного решения 135 Окружности с центрами О и О1 касаются - фото 386
Задачи для самостоятельного решения

135. Окружности с центрами О и О1 касаются внутренним образом. Найдите угол В (рис. 193). (1)

Рис 193 136 Точка находится внутри круга радиуса 6 и делит проходящую через - фото 387

Рис. 193.

136. Точка находится внутри круга радиуса 6 и делит проходящую через неё хорду на отрезки длиной 5 и 4. Найдите расстояние от точки до окружности. (2)

137. а) Докажите, что

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 388

(рис. 194);

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 389

Рис. 194.

б) докажите, что

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 390

(рис. 195). (3)

Рис 195 138 Диагональ BD четырёхугольника ABCD является диаметром - фото 391

Рис. 195.

138. Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Вычислить длину диагонали АС, если BD = 2, AB = 1, ?ABD:?DBC = 4:3. (3)

2.8. Задачи на пропорциональность отрезков хорд и секущих окружности

Напомним свойства хорд и секущих (рис. 196).

Рис 196 Для обоих случаев ОА ОВ ОС OD В частности если А совпадает с - фото 392

Рис. 196.

Для обоих случаев ОА ? ОВ = ОС ? OD.

В частности, если А совпадает с В (ОА – касательная), то ОА2= ОС ? OD.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Андрей Павлов читать все книги автора по порядку

Андрей Павлов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Геометрия: Планиметрия в тезисах и решениях. 9 класс отзывы


Отзывы читателей о книге Геометрия: Планиметрия в тезисах и решениях. 9 класс, автор: Андрей Павлов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x