Георг Гегель - Наука логики. Том 2

Тут можно читать онлайн Георг Гегель - Наука логики. Том 2 - бесплатно ознакомительный отрывок. Жанр: Книги, издательство Эксмо, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука логики. Том 2
  • Автор:
  • Жанр:
  • Издательство:
    Эксмо
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-04-110970-7
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Георг Гегель - Наука логики. Том 2 краткое содержание

Наука логики. Том 2 - описание и краткое содержание, автор Георг Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Георг Гегель – один из основоположников немецкой классической философии, создатель учения, построенного на принципах «абсолютного идеализма», диалектики, системности, историзма. Важнейшее место в его научной деятельности занимает произведение «Наука логики», в котором философ определяет основную задачу логики, исследует пути, ведущие к истине, а также развитие этих путей. Во второй том мы включили третью часть знаменитого труда – «Учение о понятии», в которую вошли три главных раздела: «Субъективность», «Объективность», «Идея».

Наука логики. Том 2 - читать онлайн бесплатно ознакомительный отрывок

Наука логики. Том 2 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Георг Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3. Теорема

1. Третью ступень этого познания, движущегося вперед согласно определениям понятия, представляет собой переход особенности в единичность; последняя составляет содержание теоремы . Следовательно, соотносящаяся с собой определенность , различие предмета внутри самого себя и соотношение различенных определенностей друг с другом – вот что должно быть рассмотрено здесь. Дефиниция содержит в себе лишь одну определенность , деление – определенность по отношению к другим определенностям ; в становлении единичным предмет разошелся в разные стороны внутри самого себя. Если дефиниция не идет дальше всеобщего понятия, то в теоремах предмет, напротив, познан в его реальности, в условиях и формах его реального существования. Взятая вместе с дефиницией теорема поэтому изображает собой идею , которая есть единство понятия и реальности. Но рассматриваемое здесь, пребывающее еще в поисках познание постольку не доходит до этого изображения, поскольку реальность в нем еще не проистекает из понятия, следовательно, не познана ее зависимость от последнего, и, стало быть, не познано само единство понятия и реальности.

Согласно указанному определению, теорема есть настоящим образом синтетическое в предмете, поскольку отношения его определенностей необходимы , т. е. обоснованы во внутреннем тождестве понятия. Синтетическое в дефиниции и делении есть принятая извне связь; преднайденному придается форма понятия, но как преднайденное все содержание лишь показывается , теорема же должна быть доказана . Так как это познание не дедуцирует содержания своих дефиниций и определений деления, то кажется, что оно могло бы избавить себя от труда доказывания также и тех отношений, которые выражаются теоремами, и довольствоваться восприятием также и в этом отношении. Однако познание отличается от голого восприятия и представления именно формой понятия вообще, которую оно сообщает содержанию; это осуществляется им в дефиниции и делении; но так как содержание теоремы проистекает из понятийного момента единичности , то она состоит в таких определениях реальности, которые уже больше не имеют своими отношениями только простые и непосредственные определения понятия; в единичности понятие перешло к инобытию , к реальности, благодаря чему оно становится идеей. Тем самым синтез, содержащийся в теореме, уже больше не имеет своим оправданием форму понятия; он есть некоторое соединение как соединение разных . Поэтому пока что еще не положенное этим единство еще следует выявить; доказывание здесь становится, следовательно, необходимым самому этому познанию.

При этом здесь прежде всего выступает трудность провести определенное различение касательно того, какие из определений предмета могут быть включены в дефиниции и какие из них должны быть отнесены в теоремы . Относительно этого не может быть никакого принципа. Правда, может показаться, что такой принцип заключается, например, в том, что присущее некоторому предмету непосредственно принадлежит к дефиниции, относительно же остального, как опосредствованного, следует сначала выявить его опосредствование. Однако содержание дефиниции есть некоторое определенное вообще содержание и вследствие этого само оно есть, по существу, нечто опосредствованное; оно имеет лишь некоторую субъективную непосредственность, т. е. субъект делает некоторое произвольное начало и допускает, чтобы некоторый предмет признавался в качестве предпосылки. а так как это есть вообще некоторый конкретный внутри себя предмет и так как он должен подвергнуться также и подразделению, то получается множество определений, которые по своей природе суть опосредствованные и принимаются за непосредственные и недоказанные не в силу какого-нибудь принципа, а лишь согласно субъективному определению. И у Эвклида , который искони справедливо признан мастером в этом синтетическом способе познания, под названием аксиомы фигурирует предпосылка о параллельных линиях , которая считалась требующей доказательства и относительно которой делались разные попытки восполнить этот пробел. Некоторые математики думали, что они открыли в некоторых других теоремах такие предпосылки, которые должны были бы быть не приняты непосредственно, а доказаны. Что же касается упомянутой аксиомы о параллельных линиях, то можно относительно этого заметить, что как раз в ней видно правильное чутье Эвклида, точно оценившего как стихию, так и природу своей науки; доказательство этой аксиомы нужно было бы вести, исходя из понятия параллельных линий; но такой способ доказательства так же мало входит в задачу его науки, как и дедукция выставляемых им дефиниций, аксиом и вообще его предмета – самого пространства и ближайших его определений, измерений; так как такую дедукцию можно вести только из понятия, а последнее лежит вне своеобразного характера эвклидовой науки, то указанные дефиниции, аксиомы и так далее необходимым образом представляют собой для этой науки некоторые предпосылки , нечто относительно-первое.

Аксиомы – чтобы сказать по этому поводу несколько слов и о них – принадлежат к тому же классу. Их обыкновенно несправедливо принимают за абсолютно-первые, как будто они сами по себе не нуждаются ни в каком доказательстве. Если бы это было на самом деле так, то они были бы чистыми тавтологиями, так как только в абстрактном тождестве нет никакой разности и, следовательно, не требуется также и никакого опосредствования. Но если аксиомы представляют собой нечто большее, чем тавтологии, то они суть положения , заимствованные из какой-либодругой науки , так как для той науки, которой они служат в качестве аксиом, они должны быть предпосылками. Они поэтому суть, собственно говоря, теоремы , и притом большей частью из логики [107]. Аксиомы геометрии и суть подобного рода леммы [108], логические положения, которые, впрочем, приближаются к тавтологиям вследствие того, что они касаются лишь величины и поэтому качественные различия в них стерты; о главной аксиоме, о чисто количественном умозаключении, речь была выше [109]. Поэтому рассматриваемые сами по себе аксиомы точно так же нуждаются в доказательстве, как и дефиниции и подразделения, и их не делают теоремами только потому, что они как относительно-первые принимаются для известной точки зрения за предпосылки.

Касательно содержания теоремы , следует теперь провести то более детальное различение, что так как это содержание состоит в некотором соотнесении определенностей реальности понятия, то эти соотношения могут быть либо более или менее неполными и отдельными отношениями предмета, либо же таким отношением, которое охватывает все содержание реальности и выражает его определенное соотношение. Но единство совокупных определенностей содержания равно понятию ; предложение, содержащее это единство, само поэтому есть опять-таки дефиниция, но такая дефиниция, которая выражает не только непосредственно воспринятое понятие, но понятие, развернутое в свои определенные, реальные различия, или, иначе говоря, полное существование понятия. И то и другое, вместе взятое, представляет поэтому идею .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Гегель читать все книги автора по порядку

Георг Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука логики. Том 2 отзывы


Отзывы читателей о книге Наука логики. Том 2, автор: Георг Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x