Вацлав Смил - Энергия и цивилизация
- Название:Энергия и цивилизация
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- Город:Москва
- ISBN:978-5-04-101573-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вацлав Смил - Энергия и цивилизация краткое содержание
Энергия и цивилизация - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Примечание 1.4. Значения плотности энергии продуктов питания и видов топлива
Источники:значения плотности энергии для отдельных видов продуктов питания приведены в Watt (1973), Jenkins (1993) b USDA (2011).
Другая величина, приобретающая все большее значение с ростом индустриализации – эффективность преобразования энергии.Это соотношение выхода/ входа описывает работу преобразователей энергии, будь то печи, двигатели или элементы освещения. И хотя мы не можем ничего сделать с энтропийным рассеиванием, мы можем увеличить эффективность преобразования, снизив количество энергии, необходимое для выполнения отдельных задач (примечание 1.6). Существуют фундаментальные (термодинамические, механические) ограничения для этого улучшения, и мы уже во многих процессах подошли к лимиту практической эффективности, хотя в большинстве случаев, например, для широко распространенных преобразователей вроде двигателей внутреннего сгорания и осветительных приборов еще достаточно возможностей усовершенствования.

Рисунок 1.4. Робота углежога в начале XVII века, Англия. Предоставлено: John Evelyn, «Silva»
Примечание 1.5. Плотность энергии растительного топлива
Фотосинтез превращает менее 0,5 % поступающего солнечного излучения в новую фитомассу. Лучшая годовая продуктивность древесного топлива для быстрорастущих видов (тополь, эвкалипт, сосна) составляет не больше чем 10 т/га, ну а в более засушливых регионах значение колеблется между 5 и 10 т/га (Smil 2015b). С плотностью энергии сухого дерева в среднем около 18 ГДж/т добыча в 10 т/га обеспечит плотность мощности около 0,6 Вт/м 2: (10 т/га х 18 ГДж)/3,15 х 107 (секунд в год) = -5708 Вт; 5708 Вт/10000 м 2/га = -0,6 Вт/м 2. Большому городу XVIII века требовалось по меньшей мере 20–30 Вт/м 2на застроенную площадь для обогрева, приготовления пищи и мануфактурного производства, так что древесное топливо пришлось бы добывать с территории в 30–50 раз большей, чем сам город.
Древесный уголь был единственным бездымным топливом доиндустриальной эпохи, которое все традиционные цивилизации использовали для обогрева домов. А его изготовление сопровождается значительной потерей энергии, ведь даже в середине XVIII века типичное соотношение каменный уголь/дерево составляло один к пяти, что значило в терминах энергии (сухое дерево – 18 ГДж/т, древесный уголь, теоретически чистый углерод, – 29 ГДж/т) эффективность преобразования всего 30 % (5 х 18/29 = 0,32). Так что плотность мощности древесины, предназначенной для получения каменного угля, всего около 0,2 Вт/м 2. Поэтому большим доиндустриальным городам, расположенным в умеренном климате северного полушария и зависящим от каменного угля (Пекин может быть хорошим примером), требовалась покрытая лесом территория по меньшей мере в 100 раз больше их собственного размера, чтобы не остаться без топлива.
Примечание 1.6. Повышение эффективности и парадокс Джевонса
Технический прогресс ведет за собой множество впечатляющих достижений в области эффективности, и история освещения является одним из лучших примеров (Nordhaus 1998; Fouquet and Pearson 2006). Свечи превращают всего лишь 0,01 % химической энергии сала или воска в свет. Лампочки Эдисона, изобретенные в 1880-х годах, были примерно в десять раз эффективнее. К 1900 году угольные электростанции имели эффективность примерно 10 %, лампочки превращали не более 1 % энергии в свет, отсюда ясно, что лишь 0,1 % химической энергии угля становилось светом (Smil 2005). Лучшая газовая турбина парогазового цикла (используется горячий газ, покидающий газовую турбину, чтобы производить пар для паровой турбины) в наше время имеет эффективность 60 %. Флуоресцентные лампы могут похвастаться 15 % эффективности, как и диодные светильники (USDOE 2013). Это значит, что около 9 % природного газа превращается в свет, выигрыш в 90 раз по сравнению с концом XIX века. Такой выигрыш сохраняет капитал и уменьшает текущие издержки, а также снижает давление на окружающую среду.
Но в прошлом рост эффективности преобразования энергии не всегда приводил к реальной экономии. В 1865 году Стэнли Джевонс (1835–1882), английский экономист, указал, что введение более экономичных паровых машин сопровождалось значительным увеличением потребления угля, и сделал такой вывод: «Будет ошибочным считать, что экономия при использовании разных видов топлива приведет к уменьшению потребления. На самом деле все обстоит наоборот. Как правило, новые методы экономии ведут к увеличению потребления в соответствии с принципом, учтенным во множестве параллельных случаев» (Jevons 1865, 140). Реальность этого явления подтвердили многочисленные исследования (Herring 2004, 2006; Poliment et al. 2008), но в богатых странах, где высок объем потребляемой энергии на душу населения и где достигнут уровень насыщения, этот эффект слабеет. В результате реакция на повышение эффективности на уровне конечного использования часто мала и еще уменьшается со временем, и в масштабах целой экономики выгода может быть очень небольшой, если вообще быть (Goldstein, Martinez, and Roy 2011).
Когда эффективность рассчитана для производства продуктов питания (энергия в пище/энергия на входе для того, чтобы ее вырастить), топлива или электричества, ее обычно именуют энергоотдачей.Полезная энергоотдача в любом традиционном сельском хозяйстве опирается исключительно на мощность живой силы и должна значительно превышать единицу: съедобный урожай обязан содержать больше энергии, чем ее потребляется в виде пищи, необходимой людям и животным, которые производят этот урожай, а также тем, кто не работает и зависит от работающих. Непреодолимая проблема возникает, если мы пытаемся сравнить энергоотдачу в традиционном сельском хозяйстве, где используется только сила мускулов (и только преобразования недавно полученного солнечного излучения), и современным сельским хозяйством, которое спонсируется прямо (топливо для работ на полях) и косвенно (энергия, необходимая для синтеза удобрений и пестицидов и для производства сельскохозяйственных машин) ископаемым топливом и по этой причине неизбежно имеет более низкую энергоотдачу, чем традиционное сельское хозяйство (примечание 1.7).
Инаконец, энергоемкостьизмеряет стоимость продуктов, услуг и даже общий объем производства в стандартных единицах энергии и стоимость самой энергии тоже. Среди наиболее широко используемых материалов алюминий и пластик имеют высокую энергоемкость, в то время как стекло и бумага сравнительно дешевы, а древесина (исключая затраты на фотосинтез) является наименее энергоемким из всех материалов (примечание 1.8). Техническое развитие в последние два века привело к тому, что энергоемкость во многих случаях значительно уменьшилась. Возможно, самый известный пример: плавка чугуна на коксе в больших домнах в наше время требует меньше чем 10 % энергии на единицу массы горячего металла, чем в случае доиндустриального производства чугуна на древесном угле (Smil 2016).
Читать дальшеИнтервал:
Закладка: