Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть

Тут можно читать онлайн Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство ООО «ЛитРес», www.litres.ru, год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть краткое содержание

Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - описание и краткое содержание, автор Димитри Маекс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - читать онлайн бесплатно ознакомительный отрывок

Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Димитри Маекс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эта история помогла мне сбросить покров таинственности с процесса статистического моделирования поведения людей. Я понял, что если мне удастся создать детальный список, описывающий клиентов, – не только их имен, но и другой информации (возраст, пол, профессия, уровень дохода, сумма их затрат), – то я смогу сделать вполне обоснованные предположения, сколько продуктов у компании они купят в сравнении с лучшими ее клиентами.

Чтобы лучше представлять ситуацию с будущими продажами, вам имеет смысл пригласить на работу статистика и поручить ему разработку моделей, сходных с той, которую я сделал для авиакомпании. Но в будущем – в течение трех или четырех лет – я ожидаю появления таких программ, которые позволят вам делать все это самостоятельно. Не исключено, что Google даже выпустит бесплатную версию.

Полная детальная модель

В предыдущем сюжете, рассматривая пример авиакомпании, мы опирались лишь на один из трех компонентов, составляющих пожизненную ценность, – изменение дохода в будущем (увеличение или снижение). Порой, когда вытаскиваешь какие-то ключевые данные из имеющейся клиентской базы, требуется создание модели, включающей в себя еще две переменные – ценность индивидуального клиента и продолжительность связи с компанией. Я расскажу, как это делается, на примере нашей работы с крупной розничной сетью. Предположим, эта сеть (назовем ее Retailco) наняла нас для оценки качества своей клиентской базы. Мы начали с классификации каждого домохозяйства по показателю пожизненной ценности, чтобы дать Retailco возможность индивидуального обращения к каждому из них. (Клиенты с самым высоким показателем потенциальной пожизненной ценности по вполне понятным причинам должны были получать от компании больше внимания.)

В то время, когда мы начали работать с Retailco, у нее было около полутора тысяч магазинов. И покупатели, как вы можете понять, снабжали компанию невероятно большими объемами данных. В базе данных содержалась информация почти о двадцати миллионах домохозяйств. Компания знала, что именно приобретало каждое из них, как часто и где. Размер базы данных мог показаться пугающим, но тем, кто любит копаться в цифрах, было где развернуться!

Прежде Retailco уже нанимала на работу опытных маркетологов и поручала им выжимать максимум из своей клиентской базы. Специалистам удалось внедрить некоторые из самых крупных и сложных программ лояльности в розничной отрасли. Теперь Retailco хотела разобраться с показателями пожизненной ценности клиентов, чтобы полностью сосредоточить внимание на лучших для торговой сети покупателях (как настоящих, так и потенциальных) и со временем еще сильнее увеличить их ценность. Модель позволяла нам понять простую, но важную вещь: с ее помощью мы могли знать, сколько денег потратит каждое отдельно взятое домохозяйство на отношения с Retailco в течение следующих трех лет – именно таков срок «всей жизни» в динамичном мире розничной торговли!

Цель была простой, но для ее реализации потребовался сложный и запутанный математический аппарат. Для начала мы выяснили, что означает пожизненная ценность для Retailco на концептуальном уровне, а результат представили в виде диаграммы (см. ниже). Хочу предупредить, что чуть далее приводится самая сложная статистическая модель в этой книге. Если вам удастся понять смысл следующих двух абзацев, то вы не только можете считать себя большим молодцом, но и вправе гордиться, что понимаете суть принципа цепей Маркова.

Как вы можете заметить мы поместили клиентов в четыре различные группы в - фото 18

Как вы можете заметить, мы поместили клиентов в четыре различные группы в зависимости от уровня их расходов. «Отсутствие» означало домохозяйства, не совершавшие в любом из магазинов сети покупок в течение двенадцати месяцев.

Затем мы определили пожизненную ценность домохозяйств следующим образом:

Пожизненная ценность = (Вероятность будущего состояния) × (Ценность в будущем состоянии)

Это означает: пожизненная ценность клиента отчасти состоит из вероятности того, что в последующие три года она окажется в одной из групп (с высоким, средним и низким показателями или показателями отсутствия), а отчасти – из ценности этого домохозяйства в будущем (с высоким, средним или низким показателями). Другими словами, для расчета пожизненной ценности мы должны были сначала предсказать вероятность того, что в следующем году кто-то останется в группе с высоким показателем или, напротив, переместится в другую группу (с низким или средним показателями или его отсутствием). Затем мы умножали эту вероятность на среднюю ценность клиентов, находившихся в том или ином состоянии.

Изложенное мной может показаться слишком сложным, но на практике все было куда проще. Вот вам пример (вполне гипотетический) работы метода. Предположим, мы внимательно изучили данные и заключили, что клиенты Retailco с высоким уровнем ценности тратят 1000 долларов в год, клиенты со средним уровнем – 500 долларов, а с низким – 50 долларов. Предположим также, что сам я отношусь к клиентам Retailco с высоким уровнем ценности.

Затем мы строили две модели. Первая из них предсказывала вероятность, что я останусь клиентом (с использованием метода, который я описал в рассказе об авиакомпании). А вторая предсказывала вероятность, что я останусь клиентом с высокой ценностью или, напротив, перемещусь в группу средней или даже низкой ценности.

Давайте предположим, что, согласно модели, у меня есть 20-процентный шанс перестать быть клиентом, 10-процентный – стать клиентом в группе низкой ценности, 30-процентный – клиентом из средней группы и 40-процентный шанс остаться в группе с высокой ценностью. С помощью приведенной ниже формулы могу рассчитать свою возможную ценность на год второй:

Ценность (второй год) = 20 % × 0 + 10 % × 50 долл. + 30 % × 500 долл. + 40 % × 1000 долл. = 555 долл.

Получив данные для второго года, мы сможем, основываясь на прогнозе, повторить расчет и понять, что скорее всего произойдет в течение третьего года.

Итак, у нас появился идеальный механизм расчета приоритетов для Retailco, позволяющий развивать долгосрочные отношения с клиентами, основанные на предположении, что они собираются стать со временем более ценными. Когда Retailco создаст новые программы лояльности и начнет напрямую работать с клиентами, основываясь на нашей модели пожизненной ценности, то продуктивность компании может оказаться значительно выше эффективности ее конкурентов. Подобный метод работы позволяет вам выявлять лучших клиентов и концентрировать усилия на общении с ними.

Разобравшись с этой моделью, Retailco пошла дальше и решила оценить каждого нового клиента с точки зрения того, какую сумму он сможет потратить за время, проведенное с компанией. Специалисты компании сравнили размер начальной покупки с соответствующими данными о своих существующих клиентах. Однако первая покупка вряд ли способна рассказать о многом. Не исключено, что примерно 23 % всех покупателей, совершающих первую покупку, станут со временем крайне ценными клиентами. Но сама по себе такая покупка ничего не скажет о том, перейдет ли клиент в ключевую группу или останется в 77-процентной группе менее ценных.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Димитри Маекс читать все книги автора по порядку

Димитри Маекс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть отзывы


Отзывы читателей о книге Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть, автор: Димитри Маекс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x