Елена Белова - Автостопом по мозгу. Когда вся вселенная у тебя в голове
- Название:Автостопом по мозгу. Когда вся вселенная у тебя в голове
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2021
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Белова - Автостопом по мозгу. Когда вся вселенная у тебя в голове краткое содержание
В формате PDF A4 сохранён издательский дизайн.
Автостопом по мозгу. Когда вся вселенная у тебя в голове - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чем больше ученые изучают процессы, происходящие в сетчатке, тем очевиднее, что она не просто воспринимает световую информацию и слегка фильтрует ее перед отправкой в мозг — здесь она проходит предварительную обработку, чтобы отправить мозгу отчет, содержащий результаты анализа изображения на сетчатке [3].
Например, сейчас описано 15 типов ганглионарных нейронов, отправляющих информацию из сетчатки в мозг. 90 % из них составляют мелкоклеточные нейроны — они анализируют мелкие детали того, что мы видим. Еще 5 % — крупноклеточные нейроны, они реагируют на перемещение объектов по сетчатке. Ганглионарные клетки специфичны: каждая из них предпочитает определенное направление движения и мало интересуется стимулами, которые движутся в другие стороны. При этом сетчатка различает, когда изображение двигается целиком, потому что мы перемещаем взгляд, и когда в поле зрения есть отдельные подвижные объекты. Получается, что сетчатка умеет замечать в мешанине сигналов движение объекта против потока. Если же одновременно двигается все изображение, сетчатка на мгновение гасит сигналы и передает изображение с нового положения после того, как оно стабилизировалось. Благодаря этому мы не замечаем, что постоянно совершаем саккады — быстрые движения глазами, позволяющие нам бегло осматривать поле зрения [14] Из-за этого человек никогда не замечает, что двигает глазами сам: если встать перед зеркалом и переводить взгляд с правого глаза на левый, будет казаться, что взгляд неподвижный. Если же понаблюдать за тем, как это делает другой человек, мы увидим перемещения зрачков, которые сам человек заметить не в состоянии. — Прим. авт.
[4].
Отдельно глаз умеет выделять приближающиеся объекты — те, что движутся не вправо и влево, а прямо на нас. Для этого тоже есть специальные ганглионарные клетки — они срабатывают, когда в области зрения, за которую они отвечают, появляется пятно и увеличивается в размерах.
Сетчатка умеет подкручивать резкость и контраст на границах между контрастными объектами. Это происходит благодаря латеральному (боковому) торможению. Возбуждаясь, фоторецептор не только отправляет сигнал дальше, но еще и подтормаживает соседей через горизонтальные клетки. Чем активнее клетка, тем сильнее она тормозит соседей. Пока освещенность одинаковая, все тормозят друг друга с одинаковой силой, а вот на контрастной границе получается перекос в силах: в итоге краевые клетки в светлой зоне, примыкающие к тени, передают сигнал чуть ярче, чем клетки, у которых нет темных соседей, а темные, наоборот, дополнительно затемняют сигнал на границе со светлыми. Этот эффект особенно хорошо заметен на контрастной решетке: перекрестье будет выглядеть темнее, чем вертикальные и горизонтальные линии. Так получается, потому что латеральное торможение усиливает контраст у тонких линий, а вот в центре светлого пятна темных соседей нет, перекрест дополнительно не подсвечивается и поэтому выглядит темнее. Боковое торможение сигналов на границе работает не только в пространстве, но и во времени: благодаря этому мы видим относительно четкие силуэты объектов, когда они стремительно проносятся мимо нас.
У наших глаз есть специальный инструмент для того, чтобы вовремя увидеть летящий в нас объект, — ганглионар-ные клетки.
Приведенные изображения демонстрируют особенности работы сетчатки наших глаз. Справа вверху: если зафиксировать взгляд на минуту на четырех точках в центре картинки, а затем перевести на однородный фон, можно увидеть послеобраз — инвертированный «засвет» сетчатки. Сверху справа: простой тест на слепое пятно: если прикрыть один глаз, а взгляд второго зафиксировать на букве (правый на П или левый на Л) и отодвинуться от картинки примерно на три расстояния между П и Л, вторая буква пропадет из поля зрения — ее проекция попадет как раз в область слепого пятна на сетчатке.
Ниже показано, как работает латеральное торможение (слева) и решетка Германа, демонстрирующая эффект латерального торможения: нейроны сетчатки подтормаживают соседей, благодаря этому край между пятнами света и тени выглядит более контрастным. Если у проекции на сетчатке нет контрастных соседей, то участок не подсвечивается: по этой причине узлы решетки кажутся темнее, чем горизонтальные и вертикальные линии.
Еще одна важная функция сетчатки — адаптация к освещенности и контрасту: когда мы долго фиксируемся на контрастных изображениях, они меняют восприимчивость сетчатки. Если после этого перевести взгляд на равномерно освещенную поверхность, можно заметить инвертированный след, в котором на месте темных пятен будут светлые, а на месте светлых — темные. Когда определенная область сетчатки воспринимает один и тот же сигнал долгое время, нейроны «устают»: в их клетках истощаются запасы нейромедиатора, и они хуже проводят сигналы по сравнению с теми областями, которые все это время были неактивны и имеют в запасе свежие пузырьки с нейромедиаторами для передачи сигнала.
Бывают и другие варианты послеобразов, например подвижные: если долго смотреть на водопад, а затем перевести взгляд на неподвижные объекты, может возникнуть иллюзия, что часть изображения медленно поднимается вверх. Таким же образом сетчатка адаптируется к паттернам в изображении: области сетчатки, куда долго проецируются горизонтальные полосы, намного сильнее среагирует на появление вертикальных [3].
Наверное, самая удивительная особенность сетчатки — это ее способность предсказывать будущее. Правда, речь идет о предсказании будущего изображения на интервалах в несколько десятков миллисекунд, но даже с такими оговорками это очень впечатляет! Дело в том, что зрительная информация попадает в мозг с опозданием: для того чтобы сигнал отправился в мозг, сначала должна произойти целая цепочка событий, начиная с возбуждения фоторецептора.
Как назло, наши фоторецепторы — самое слабое звено в вопросах скоростной передачи изображения: от того момента, когда свет попал в колбочку, до того, когда она запускает нервный импульс, проходит несколько десятков миллисекунд [15] Зато благодаря этому появился кинематограф: фоторецепторы реагируют настолько медленно, что мы не замечаем склеек между статичными кадрами, которые меняются каждые 40 мс, и вместо этого видим на экране кино. — Прим. авт.
(далее — мс). Кажется, что это немного, но, например, теннисный мяч при умелой подаче за это время может пролететь один-два метра: чтобы его отбить, теннисисту нужно как можно точнее знать, где он находится, но у него нет ничего, кроме зрения с неизбежными задержками.
Оказалось, что когда изображение мяча перемещается по сетчатке, его проекция запускает волну активности вдоль ганглионарных клеток. Удивительным образом эта волна в точности соответствует положению мяча, если бы его перемещения отображались без задержки на передачу сигнала от колбочек [3]! Получается, что сетчатка способна рассчитывать прогнозируемое положение объекта без задержек на работу фоторецепторов, если этот объект стремительно, но без скачков перемещается в пределах нашей видимости — за счет коллективной активности ганглионарных клеток [16] Надо сказать, что этот удивительный механизм неплохо работает только для контрастных объектов и только в определенном диапазоне скоростей, но все равно эта суперспособность сетчатки предсказывать будущее положение теннисного мяча поражает воображение. — Прим. авт.
.
Интервал:
Закладка: