Ник Бостром - Искусственный интеллект
- Название:Искусственный интеллект
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2015
- ISBN:9785000578100
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ник Бостром - Искусственный интеллект краткое содержание
Искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Элементарные формы такого подхода сегодня уже используются очень широко. Тем не менее ПО, в котором работают методы ИИ и машинного обучения, хотя и имеет некоторые шансы найти решение, неожиданное для людей, их создавших, во всех практических смыслах функционирует как обычные программы и не создает экзистенциального риска. В опасную зону мы попадаем лишь тогда, когда методы, используемые в поиске, становятся слишком мощными и универсальными, то есть когда они начинают переходить на общий уровень интеллекта, а особенно — на уровень сверхразума.
Есть (как минимум) два случая, когда могут возникнуть проблемы.
Во-первых, сверхразумный процесс поиска может найти решение, которое не только неожиданно, но и категорически неприемлемо. Это приведет к пагубному отказу по одному из обсуждавшихся выше типов (порочная реализация, инфраструктурная избыточность, преступная безнравственность). Особенно очевидна такая возможность, когда действуют монарх и джинн, напрямую воплощающие в жизнь найденные ими решения. Если компьютерные модели, призванные символизировать счастье, или заполонение планеты скрепками — первые из обнаруженных сверхразумом решений, удовлетворяющие критерию успеха, тогда мы получим сплошные смайлики и скрепки14. Но даже оракул, всего лишь сообщающий о решении, если все идет хорошо, — может стать причиной порочной реализации. Пользователь просит оракула представить план достижения определенного результата или технологию выполнения определенной функции, а затем следует этому плану или воплощает в жизнь технологию, в результате чего сталкивается с порочной реализацией точно так же, как если бы реализацией решения занимался сам ИИ15.
Во-вторых, проблемы могут возникнуть на этапе работы самого ПО. Если методы, которыми оно пользуется для поиска решения, достаточно сложны, они могут допускать управление процессом поиска в интеллектуальном режиме. В этом случае компьютер, на котором запущено ПО, будет выглядеть уже не как инструмент, а скорее как агент. То есть программа может начать разрабатывать план проведения поиска. В ее плане будут определены области, которые следует изучить в первую очередь, методы их изучения, данные, которые нужно собрать, модель использования наилучшим образом имеющихся вычислительных мощностей. Разрабатывая план, отвечающий внутреннему критерию ПО (в частности, который имеет довольно высокую вероятность привести к решению, удовлетворяющему определенному пользователем критерию в отведенное на это время), программа может остановиться на какой-то необычной идее. Например, план может начаться с получения дополнительных вычислительных мощностей и устранения потенциальных препятствий (в том числе людей). Столь «творческий подход» вполне возможен после достижения ПО высокого интеллектуального уровня. Если программа решит реализовать такой план, это приведет к экзистенциальной катастрофе.
ВРЕЗКА 9. НЕОЖИДАННЫЕ РЕЗУЛЬТАТЫ СЛЕПОГО ПОИСКА
Даже простые процессы эволюционного поиска иногда приводят к совершенно неожиданным для пользователя результатам, которые тем не менее формально удовлетворяют поставленным критериям.
Область способного к эволюции аппаратного обеспечения представляет много примеров данного явления. Поиск проводится при помощи эволюционного алгоритма, который прочесывает пространство возможных схем аппаратных средств и тестирует каждую из них на пригодность путем реализации каждого варианта в виде интегральной схемы и проверки правильности ее функционирования. Часто в результате эволюционного дизайна удается достичь значительной экономии. Например, в ходе одного из подобных экспериментов была обнаружена схема дискриминации частот, которая функционировала без тактового генератора — компонента, считавшегося обязательным для выполнения такого рода функции. Исследователи оценили, что схемы, полученные в результате эволюционного дизайна, на один-два порядка меньше, чем те, которые для тех же целей создали бы инженеры-люди. Такие схемы использовали физические свойства входящих в них компонентов совершенно нетрадиционными способами, в частности, некоторые активные и необходимые для работы компоненты вообще не были соединены с входными или выходными ножками! Вместо этого они взаимодействовали с другими компонентами за счет того, что обычно считается досадными помехами: скажем, электромагнитных полей или нагрузки источника питания.
Другой эксперимент по эволюционной оптимизации с заданием разработать осциллятор, привел к исчезновению из схемы, казалось бы, еще более необходимого компонента — конденсатора. Когда успешное решение было получено и ученые посмотрели на него, то первой реакцией были слова: «Это не будет работать!» Однако после более тщательного анализа оказалось, что алгоритм, словно секретный агент Макгайвер[25], переконфигурировал свою материнскую плату, лишенную датчиков, в импровизированный радиоприемник, использовав дорожки печатной схемы в качестве антенны для приема сигналов, генерируемых компьютером, который располагался поблизости в той же лаборатории. Затем эти сигналы усиливались схемой и преобразовывались в выходной сигнал осциллятора16.
В других экспериментах эволюционные алгоритмы разрабатывали схемы, которые определяли, что материнскую плату проверяли осциллографом или что в лаборатории в розетку включали паяльник. Эти примеры показывают, как программы в процессе свободного поиска могут изменить назначение доступных им ресурсов, чтобы обеспечить себе неожиданные сенсорные возможности такими средствами, которые привычно мыслящий человеческий ум не готов не только использовать, но и просто понять.
Тенденция эволюционного поиска: отыскивать «хитрые» решения и совершенно неожиданные пути достижения цели — проявляется и в природе, хотя мы считаем вполне нормальными знакомые нам результаты биологической эволюции, даже если и не были бы готовы спрогнозировать их. Зато можно провести эксперименты с искусственным отбором, в ходе которых увидеть работу эволюционного процесса вне рамок привычного контекста. В таких экспериментах исследователи могут создавать условия, редко встречающиеся в природе, и наблюдать за их результатами.
Например, до 1960-х гг. среди биологов было распространено мнение, что популяции хищников ограничивают свой рост, чтобы не попасть в мальтузианскую ловушку17. И хотя индивидуальный отбор работал против такого ограничения, многие считали, что групповой отбор должен подавлять индивидуальные склонности использовать любые возможности для продолжения рода и поощрять такое поведение, которое благоприятно сказывается на всей группе или популяции в целом. Позднее теоретический анализ и моделирование показали, что хотя групповой отбор и возможен в принципе, он способен победить индивидуальный отбор в очень редко встречающихся в природе условиях18. Зато такие условия могут быть созданы в лаборатории. Когда при помощи группового отбора особей мучного хрущака ( Tribolium castaneum ) попытались добиться уменьшения размера их популяции, это действительно удалось сделать19. Однако методы, благодаря которым был получен требуемый результат, включали не только «благоприятное» приспособление в виде снижения плодовитости и увеличения времени на воспроизводство, которых можно было бы наивно ожидать от антропоцентричного эволюционного поиска, но и рост каннибализма20.
Читать дальшеИнтервал:
Закладка: