Педро Домингос - Верховный алгоритм

Тут можно читать онлайн Педро Домингос - Верховный алгоритм - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Педро Домингос - Верховный алгоритм краткое содержание

Верховный алгоритм - описание и краткое содержание, автор Педро Домингос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Верховный алгоритм - читать онлайн бесплатно ознакомительный отрывок

Верховный алгоритм - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Педро Домингос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если новая технология пронизывает нашу жизнь до такой степени, как машинное обучение, нельзя, чтобы она оставалась для нас загадкой. Неясности создают благодатную почву для ошибок и неправильного применения. Алгоритм Amazon лучше, чем любой человек, умеет определять, какие книги читают сегодня в мире. Алгоритмы Агентства национальной безопасности способны узнать в человеке потенциального террориста. Моделирование климата находит безопасный уровень углекислого газа в атмосфере, а модели подбора акций больше вкладывают в развитие экономики, чем большинство из нас. Но нельзя контролировать то, чего не понимаешь, и именно поэтому вы должны понимать машинное обучение — как гражданин, как специалист и как человек, стремящийся к счастью.

Первейшая задача этой книги — посвятить вас в секреты машинного обучения. Разбираться в автомобильном двигателе нужно только инженерам и механикам, однако любой водитель должен знать, что поворот руля меняет направление движения, а если нажать на тормоз, машина остановится. Сегодня лишь немногие имеют представление об обучающихся алгоритмах хотя бы на таком уровне, не говоря уже об умении ими пользоваться. Психолог Дональд Норман придумал термин «концептуальная модель»: это грубое знание какой-либо технологии, достаточное для того, чтобы эффективно ею пользоваться. Эта книга даст вам концептуальную модель машинного обучения.

Не все обучающиеся алгоритмы работают одинаково, и это имеет определенные последствия. Возьмем, например, системы рекомендаций Amazon и Netflix и прогуляемся с ними по обычному книжному магазину. Пытаясь найти книги, которые «точно вам понравятся», Amazon, скорее всего, подведет вас к полке, к которой вы в прошлом чаще подходили, а Netflix позовет вас в незнакомый и неочевидный на первый взгляд уголок, но то, что вы там найдете, обязательно вам понравится. Из этой книги вы узнаете, что у Amazon и Netflix просто разные типы алгоритмов. Алгоритм Netflix вникает в ваши вкусы глубже (хотя все еще довольно скромно), однако, как ни странно, это еще не значит, что Amazon выиграла бы от такого подхода. Дело в том, что для успешного развития бизнеса Netflix нужно направлять спрос к длинному шлейфу малоизвестных и поэтому недорогих фильмов и телешоу и отвлекать клиентов от блокбастеров, на оплату которых абонемента просто не хватит. У менеджеров Amazon такой проблемы нет: им тоже выгодно сбыть неходовые товары, но продавать популярные и дорогие варианты не менее приятно (к тому же это упрощает логистику). Кроме того, клиенты с большей вероятностью посмотрят что-то необычное по подписке, чем купят специально.

Каждый год в мире появляются сотни новых алгоритмов с обучением, но все они основаны на небольшом наборе фундаментальных идей. Именно этим идеям и посвящена эта книга, и их вам будет вполне достаточно, чтобы понять, как машинное обучение меняет наш мир. Не уходя в дебри и даже не очень затрагивая применение алгоритмов в компьютерах, мы дадим ответы на важные для всех нас вопросы: «Как мы учимся?», «Можно ли учиться эффективнее?», «Что мы способны предсказать?», «Можно ли доверять полученному знанию?» Соперничающие школы машинного обучения отвечают на эти вопросы по-разному. Всего существует пять основных научных течений, каждому из которых мы посвятим отдельную главу. Символисты рассматривают обучение как процесс, обратный дедукции, и черпают идеи из философии, психологии и логики. Коннекционисты6 воссоздают мозг путем обратной инженерии и вдохновляются нейробиологией и физикой. Эволюционисты симулируют эволюцию на компьютерах и обращаются к генетике и эволюционной биологии. Сторонники байесовского подхода7 полагают, что обучение — это разновидность вероятностного вывода, и корни этой школы уходят в статистику. Аналогисты занимаются экстра­поляцией на основе схожести суждений и находятся под влиянием психологии и математической оптимизации. Стремясь построить обучающиеся машины, мы пройдемся по истории мысли за последнюю сотню лет и увидим ее в новом свете.

У каждого из пяти «племен» машинного обучения есть собственный универсальный обучающийся — Верховный — алгоритм, который в принципе можно использовать для извлечения знания из данных в любой области. Для символистов это обратная дедукция, для коннекционистов — обратное распространение ошибки, для эволюционистов — генетическое программирование, для байесовцев — байесовский вывод, а для аналогистов — метод опорных векторов. Однако на практике каждый из этих алгоритмов хорош для одних задач, но не очень подходит для других. Хотелось бы, чтобы все их черты слились воедино в окончательном, совершенном Верховном алгоритме. Кто-то считает это несбыточной мечтой, но у многих из нас — людей, занимающихся машинным обучением, — при этих словах загораются глаза, и мечта заставляет нас работать до поздней ночи.

Верховный алгоритм сумеет извлечь из данных вообще все знание — знание прошлого, настоящего и будущего. Изобретение этого алгоритма станет одним из величайших прорывов в истории науки. Оно ускорит прогресс буквально во всем, изменит мир так, как мы едва можем себе сегодня представить. Верховный алгоритм для машинного обучения — это нечто вроде стандартной модели в физике элементарных частиц и центральной догмы молекулярной биологии: единая теория, объясняющая все, что мы сегодня знаем, и закладывающая фундамент десятилетий или целых веков будущего прогресса. Верховный алгоритм — ключ к решению стоящих перед человечеством сложнейших проблем — от создания домашних роботов до лечения рака.

Ведь рак так сложно лечить, потому что это не одно, а целый комп­лекс заболеваний. Опухоли бывают вызваны невообразимо широким спектром причин, к тому же они мутируют и дают метастазы. Самый надежный способ уничтожить опухоль — секвенировать8 ее геном, определить, какие лекарства помогут без ущерба для пациента с учетом конкретного генома и истории болезни, и, возможно, даже разработать новое лекарство именно для данного случая. Ни один врач не в состоянии овладеть всеми необходимыми для этого знаниями, но решение таких задач — идеальная работа для машинного обучения. В сущности, это просто более сложная и серьезная версия поиска, которым каждый день занимаются Amazon и Netflix, только ищем мы не подходящую книгу или фильм, а подходящее лекарство. К сожалению, хотя обучающиеся алгоритмы уже умеют со сверхчеловеческой точностью диагностировать многие болезни, лечение рака выходит далеко за пределы их возможностей. Если нам удастся отыскать Верховный алгоритм, ситуация изменится. Поэтому вторая цель этой книги — помочь вам самостоятельно изобрести его. Можно подумать, что для этого нужны глубочайшие познания в математике и серьезная теоретическая работа. Отнюдь нет. Для этого нужно как раз отвлечься от тайн математики и посмотреть на всеобъемлющие механизмы обучения, и здесь неспециалист, подходящий к лесу издалека, во многом находится в более выгодном положении, чем профессионал, увязнувший в изучении отдельных деревьев. Концептуальное решение проблемы можно дополнить математикой, но это не самое главное, и к тому же не тема этой книги. Так что, когда мы будем заходить в гости к каждому «племени», надо будет собрать кусочки мозаики и сообразить, куда они подходят, не забывая при этом, что ни один слепец не может увидеть слона целиком. Мы увидим, какой вклад каждое из «племен» способно внести в лечение рака, чего ему не хватает, а затем шаг за шагом соберем кусочки в решение — вернее, одно из решений. Конечно, это не будет Верховным алгоритмом, но ближе к нему еще никто не подбирался. Будем надеяться, что результат станет удачной отправной точкой для вашего воображения. Потом мы посмотрим, как можно было бы использовать полученный алгоритм в качестве оружия в борьбе с раком. Читая эту книгу, не стесняйтесь пробегать глазами или пропускать сложные для понимания фрагменты. Важна общая картина, и, возможно, будет полезнее вернуться к этим местам уже после того, как мозаика сложится.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Педро Домингос читать все книги автора по порядку

Педро Домингос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Верховный алгоритм отзывы


Отзывы читателей о книге Верховный алгоритм, автор: Педро Домингос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x