Педро Домингос - Верховный алгоритм

Тут можно читать онлайн Педро Домингос - Верховный алгоритм - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Педро Домингос - Верховный алгоритм краткое содержание

Верховный алгоритм - описание и краткое содержание, автор Педро Домингос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Верховный алгоритм - читать онлайн бесплатно ознакомительный отрывок

Верховный алгоритм - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Педро Домингос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ключевой вход генетического алгоритма, как назвали творение Холланда, — функция приспособленности. Если имеется программа-кандидат и некая цель, которую эта программа должна выполнить, функция приспособленности присваивает программе баллы, показывающие, насколько хорошо она справилась с задачей. Можно ли так интерпретировать приспособленность в естественном отборе — большой вопрос: приспособленность крыла к полету интуитивно понятна, однако цель эволюции как таковой неизвестна. Тем не менее в машинном обучении необходимость чего-то похожего на функцию приспособленности не вызывает никаких сомнений. Если нам нужно поставить диагноз, то программа, которая дает правильный результат у 60 процентов пациентов в нашей базе данных, будет лучше, чем та, что попадает в точку только в 55 процентах случаев, и здесь возможной функцией приспособленности станет доля правильно диагностированных случаев.

В этом отношении генетические алгоритмы во многом похожи на искусственную селекцию. Дарвин открывает «Происхождение видов» дискуссией на эту тему, чтобы, оттолкнувшись от нее, перейти к более сложной концепции естественного отбора. Все одомашненные растения и животные, которые мы сегодня воспринимаем как должное, появились в результате многих поколений отбора и спаривания организмов, лучше всего подходящих для наших целей: кукурузы с самыми крупными початками, деревьев с самыми сладкими фруктами, самых длинношерстных овец, самых выносливых лошадей. Генетические алгоритмы делают то же самое, только выращивают они не живых существ, а программы, и поколение длится несколько секунд компьютерного времени, а не целую жизнь.

Функция приспособленности воплощает роль человека в этом процессе, но более тонкий аспект — это роль природы. Начав с популяции не очень подходящих кандидатов — возможно, совершенно случайных, — генетический алгоритм должен прийти к вариантам, которые затем можно будет отобрать на основе приспособленности. Как это делает природа? Дарвин этого не знал. Здесь в игру вступает генетическая часть алгоритма. Точно так же как ДНК кодирует организм в последовательности пар азотистых оснований, программу можно закодировать в строке битов. Вместо нулей и единиц алфавит ДНК состоит из четырех символов — аденина, тимина, гуанина и цитозина. Но различие лишь поверхностное. Вариативность последовательности ДНК, или строки битов, можно получить несколькими способами. Самый простой подход — это точечная мутация, смена значения произвольного бита в строке или изменение одного основания в спирали ДНК. Но Холланд видел настоящую мощь генетических алгоритмов в более сложном процессе: половом размножении.

Если снять с полового размножения все лишнее (не хихикайте), останется суть: обмен генетического материала между хромосомами отца и матери. Этот процесс называется кроссинговер, и его результат — появление двух новых хромосом. Первая состоит из материнской хромосомы до точки перекреста, после которой идет отцовская, вторая — наоборот:

Генетический алгоритм основан на подражании этому процессу В каждом поколении - фото 13

Генетический алгоритм основан на подражании этому процессу. В каж­дом поколении он сводит друг с другом самые приспособленные особи, перекрещивает их битовые строки в произвольной точке и получает двух потомков от каждой пары родителей. После этого алгоритм делает в новых строках точечные мутации и отпускает в виртуальный мир. Когда строки возвращаются с присвоенным значением приспособ­ленности, процесс повторяется заново. Каждое новое поколение более приспособлено, чем предыдущее, и процесс прерывается либо после достижения желаемой приспособленности, либо когда заканчивается время.

Представьте, например, что нам нужно вывести правило для фильтрации спама. Если в обучающих данных десять тысяч разных слов, каждое правило-кандидат можно представить в виде строки из 20 тысяч битов, по два для каждого слова. Первый бит для слова «бесплатно» будет равен единице, если письмам, содержащим слово «бесплатно», разрешено соответствовать правилу, и нулю, если не разрешено. Второй бит противоположен: один, если письма, не содержащие слова «бесплатно», соответствуют правилу, и ноль — если не соответствуют. Если единице равны оба бита, письмо будет соответствовать правилу вне зависимости от того, содержит оно слово «бесплатно» или нет, то есть правило, по сути, не содержит условий для этого слова. С другой стороны, если оба бита равны нулю, правилу не будут соответствовать никакие письма, поскольку либо один, либо другой бит всегда ошибается и такой фильтр пропустит любые письма (ой!). В целом письмо соответствует правилу, только если оно разрешает весь паттерн содержащихся и отсутствующих в нем слов. Приспособленностью правила может быть, например, процент писем, который оно правильно классифицирует. Начиная с популяции произвольных строк, каждая из которых представляет собой правило с произвольными условиями, генетический алгоритм будет выводить все более хорошие правила путем повторяющегося кроссинговера и мутаций самых подходящих строк в каждом поколении. Например, если в текущей популяции есть правило «Если письмо содержит слово “бесплатный” — это спам» и «Если письмо содержит слово “легко” — это спам», перекрещивание их даст, вероятно, более подходящее правило «Если письмо содержит слова “бесплатный” и “легко” — это спам», при условии, что перекрест не придется между двумя битами, соответствующими одному из этих слов. Кроссинговер также породит правило «Все письма — спам», которое появится в результате отбрасывания обоих условий. Но у этого правила вряд ли будет много потомков в следующем поколении.

Поскольку наша цель — создать лучший спам-фильтр из всех возможных, мы не обязаны честно симулировать настоящий естественный отбор и можем свободно хитрить, подгоняя алгоритм под свои нужды. Одна из частых уловок — допущение бессмертия (жаль, что в реальной жизни его нет): хорошо подходящая особь будет конкурировать за размножение не только в своем поколении, но и с детьми, внуками, правнуками и так далее — до тех пор пока остается одной из самых приспособленных в популяции. В реальном мире все не так. Лучшее, что может сделать очень приспособленная особь, — передать половину своих генов многочисленным детям, каждый из которых будет, вероятно, менее приспособлен, так как другую половину генов унаследует от второго родителя. Бессмертие позволяет избежать отката назад, и при некотором везении алгоритм быстрее достигнет желаемой приспособленности. Конечно, если оценивать по количеству потомков, самые приспособленные индивидуумы в истории были похожи на Чингисхана — предка одного из двух сотен живущих сегодня людей. Так что, наверное, не так плохо, что в реальной жизни бессмертие не дозволено.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Педро Домингос читать все книги автора по порядку

Педро Домингос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Верховный алгоритм отзывы


Отзывы читателей о книге Верховный алгоритм, автор: Педро Домингос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x