Smart Reading - Ключевые идеи книги: Искусство стратегии. Руководство по теории игр для успеха в бизнесе и жизни. Авинаш Диксит, Барри Нейлбафф
- Название:Ключевые идеи книги: Искусство стратегии. Руководство по теории игр для успеха в бизнесе и жизни. Авинаш Диксит, Барри Нейлбафф
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Smart Reading - Ключевые идеи книги: Искусство стратегии. Руководство по теории игр для успеха в бизнесе и жизни. Авинаш Диксит, Барри Нейлбафф краткое содержание
Игра всерьез требует трезвого расчета. Это искусство предугадывать следующий ход, понимая, что противник сейчас занят тем же самым. Почти каждое деловое и личное взаимодействие между людьми включает в себя компоненты теории игр. Ее принципы часто противоречат здравому смыслу. Человеком могут двигать эмоции, или чувство справедливости, или альтруизм. Чтобы выигрывать, нужно учитывать неопределенность, находить новые, нестандартные решения. Авинаш Диксит и Барри Нейлбафф в своей книге «Искусство стратегии» анализируют любопытные примеры из поп-культуры, телевидения, кино, спорта, политики. Вы узнаете о дилемме узников, принципах стратегии «Зуб за зуб», механизме наказания обманщиков, равновесии Нэша. Способность мыслить, как хороший игрок, дает бонус к жизненному и деловому успеху.
Зачем читать
• Понять, как стратегическое мышление помогает выигрывать на торгах и в жизни.
• Разобраться, как учитывать иррациональную природу человека при принятии важных решений.
• Снизить риск быть обманутым партнером по бизнесу или в жизни.
Об авторах
Авинаш Диксит – индо-американский экономист. Профессор экономики Принстонского и Оксфордского университетов. Окончил физико-математический факультет Бомбейского университета, затем учился математике и экономике в Кембридже и Массачусетском технологическом институте. Работал консультантом в Международном валютном фонде и Фонде Рассела Сейджа. В 2001 году занимал кресло президента Экономического общества. Член Американской академии наук. Изучает прикладное значение теории игр в экономике.
Барри Нейлбафф – профессор менеджмента в Йельской школе менеджмента, эксперт в области бизнес-стратегии и теории игр. Выпускник Массачусетского технологического института по специальности «Экономика и математика». Получил степень доктора экономических наук Оксфордского университета. После поездки в Индию, где он анализировал чайную промышленность для одного из исследований, открыл вместе соучредителем успешную чайную компанию Honest Tea. Постоянный автор колонки «Почему нет?» в журнале Forbes.
Ключевые идеи книги: Искусство стратегии. Руководство по теории игр для успеха в бизнесе и жизни. Авинаш Диксит, Барри Нейлбафф - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Так же работает классическая «дилемма узников». У нас есть два человека, обвиняемых в преступлении. Кроме их возможных признаний, других доказательств нет. Подозреваемых допрашивают по одному и обещают тому, кто не признается первым, более суровый приговор. С высокой вероятностью они сознаются, желая избежать ужесточения приговора, хотя им обоим лучше было бы молчать.
В «дилемме узников» может быть задействовано множество людей. Именно так происходит, когда людьми правит диктатор: никто не хочет такого правителя, но еще меньше люди хотят рисковать собственной жизнью – так что устранить диктатора (хотя это облегчило бы жизнь всем!) никто попросту не пытается.
Рассказ 7. Такаши Хашияма предложил аукционным домам Sotheby’s и Christie’s самим выбрать, кто будет продавать его коллекцию стоимостью в 18 миллионов долларов; а для выбора сыграть в «Камень-ножницы-бумага».
Christie’s спросили совета у детей, часто играющих в эту игру. Те сказали, что лучше начинать с ножниц: камень – слишком очевидный ход (на это повлияли «Симпсоны»).
Sotheby’s решили, что все выборы равнозначны. Выбрали бумагу – и Christie’s заработала 3 миллиона долларов (12 %) комиссионных.
Большинство людей делает предсказуемые ходы – и если вести себя непредсказуемо, можно выиграть.
А в сделке с аукционерами самым явным проигравшим стал Хашияма. Он положился на волю случая вместо того, чтобы устроить аукцион среди аукционеров.
Рассказ 8. В фильме «Парни и куклы» игрок Скай Мастерсон рассказывает о совете отца: «Никогда не соглашайся на пари типа “Спорим, что я вытяну из колоды пикового валета – и если да, то налью тебе сидра в ухо”. Такие пари всегда заканчиваются сидром в ушах».
Тот же совет применим и к фьючерсным контрактам. Если их заключают трейдеры, а не производители, то всегда идет речь об игре с нулевой суммой: кто-то выигрывает, кто-то проигрывает. И у тех, кто предлагает такие контракты (как и у тех, кто предлагает пари), есть основания полагать, что они выиграют. Так что чаще всего не стоит принимать подобные предложения.
Можно проиграть, даже выиграв. Например, выиграв аукцион – и обнаружив, что в итоге сильно переплатил.
Условия можно уравнять, если предложить менее информированной стороне самой выбирать, какую позицию занять в сделке (например, продавать или покупать).
Рассказ 9. Однажды американцы в Израиле взяли такси. Водитель не включил счетчик, а по приезде назвал цену – 2500 шекелей (2,75 доллара). Американцы предположили, что таксист завысил цену и, зная, что в Израиле торгуются, назвали свою – 2200 шекелей. Водитель возмутился, не дал им выйти, привез их на то же место, где подобрал, и выгнал из такси со словами: «А теперь добирайтесь за 2200 шекелей!».
Это послужило хорошим уроком: нельзя игнорировать гордость и иррациональность людей. Иногда лучше заплатить немного больше. То, что мотивирует другого игрока, может быть сильнее выгоды, которую видите вы(например, в случае с таксистом ему было важнее хорошо выглядеть в глазах своей невесты, сидевшей рядом в той же машине, чем заработать несколько долларов).
Кроме того, всегда стоит учитывать, что любая ваша игра может быть частью какой-то большей игры.
Рассказ 10. Авторы предлагают сыграть: если читатель угадает число от 1 до 110 с одной попытки, ему заплатят 100 долларов, с двух попыток – 80, с трех – 60, с четырех – 40 и с пяти – 20. Больше пяти попыток делать нельзя. При этом авторы говорят, что платить деньги они не хотят, но готовы помочь угадать.
Авторы предполагают, что ход игры со стороны читателя будет таков: сначала 50 (результат – перебор), потом 25 (недобор), 37 (недобор), 42 (недобор). Далее остается диапазон 43–49 и одна попытка. Авторы считают, что после повторного предупреждения «Мы не хотим платить вам деньги» неискушенный игрок скорее всего выберет 49, а более искушенный – 48.
Зная эту закономерность, авторы могут так загадать число, чтобы уменьшить вероятность выплаты денег.
2. Игры, в которые можно выиграть с помощью обратных рассуждений
2.1. В комиксе Peanuts есть повторяющаяся тема: Люси предлагает Чарли ударить по мячу, в последний момент убирает мяч, и Чарли падает на землю. Поскольку Чарли знает Люси и может предположить, как она поступит, ему стоит не поддаваться на провокацию.
В играх последовательного взаимодействия(когда игроки ходят поочередно) действует Первое Правило: «Смотреть в будущее и обосновывать свой выбор прошлым опытом».
Такой тип решений можно представить с помощью «дерева решений», где развилка на две или больше ветвей – это точка выбора. Надо проанализировать будущие выборы, чтобы не ошибиться на ранних развилках.
Когда речь идет об игре, решения могут принимать и другие люди (игроку надо анализировать еще и их логику, чтобы предсказать их действия). Такое «дерево» – зависящее от действий более чем одного человека – называется «деревом игры».
Простое «дерево игры» на примере Peanuts:
Люси предлагает игру.
Чарльз на развилке: он может отказаться (игра заканчивается) или согласиться.
Если Чарльз соглашается, то Люси на развилке: она может убрать мяч или позволить Чарльзу ударить.
Лучший выбор для Чарльза – отказаться от игры: это не дает Люси возможности убрать мяч (которая предсказывается по ее предыдущему поведению).
Такие схемы нужны для выделения существенных элементов игры и упрощения анализа.
2.2. Не все игры при выигрыше одного участника ведут к проигрышу другого. Есть игры с ненулевой суммой, то есть игры, где при определенной тактике выигрывают все участники.
Представим себе то же дерево игры, но вместо Люси будет Фредо, предлагающий Чарльзу: «Инвестируй в мой проект 100 000 долларов, я за год заработаю 500 000 и мы их разделим поровну». Фредо, конечно, может обмануть Чарльза (и это надо предвидеть, анализируя известную информацию о Фредо, законах страны, возможностью воздействовать на Фредо после окончания контракта и т. п.). Недоверие Чарльза надо предвидеть и Фредо : чтобы убедить потенциального инвестора, ему придется постараться отдельно. Но если Фредо будет играть честно, выиграют оба : прибыль Фредо составит 250 000 долларов, прибыль Чарльза – 150 000.
2.3. Обратные рассуждения делают игры разрешимыми. Однако нужно помнить, что:
• существует еще и элемент случайности;
• не всегда один игрок знает, какие цели есть у других игроков и какие из этих целей другие игроки считают более приоритетными;
Читать дальшеИнтервал:
Закладка: