Ларри Константин - Человеческий фактор в программировании
- Название:Человеческий фактор в программировании
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ларри Константин - Человеческий фактор в программировании краткое содержание
Хорошее программное обеспечение создается людьми. Так же как и плохое. Именно поэтому основная тема этой книги — не аппаратное и не программное обеспечение, а человеческий фактор в программировании (peopleware). Первое издание «Constantine on Peopleware» признано классическим трудом в области информационных технологий. Новая книга Ларри Константина включает все 52 легендарные статьи из предыдущей книги и 25 новых эссе.
Peopleware охватывает все аспекты, связанные с ролью людей в разработке программного обеспечения. Это качество и продуктивность, модели и методы, динамика поведения коллектива, руководство проектами, разработка интерфейсов и взаимодействие между человеком и компьютером, психология и процессы мышления. В данное издание включены два новых раздела, посвященных организационной культуре и юзабилити программных продуктов.
Название оригинала на английском языке: The Peopleware Papers by Larry L. Constantine
Человеческий фактор в программировании - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для точного и достаточно простого отображения программ хорошая система обозначений выделяет важные элементы и скрывает несущественные. Главные части и основные компоненты выделяются крупно, в то время как менее значимые детали становятся примечаниями или комментариями или совсем не обозначаются на схеме.
Картина сохраняет простоту, так как не отображает внутренних деталей. Компонент программы, который по сути является «черным ящиком», становится простым прямоугольником, нарисованным на экране или бумаге без отображения внутренних деталей. Здесь речь идет о целых программных блоках, а не об их внутреннем содержимом.
В идеале мы хотели бы получить такой инструмент контроля отображения, который достижим только с помощью компьютерных средств. Например, мы хотели бы просматривать схему коммуникаций между объектами, пробегая глазами мелкие элементы, а затем увеличивать масштаб, чтобы изучить взаимосвязи в какой-то одной части схемы. Мы могли бы увеличить какой-нибудь объект, чтобы узнать, какие методы он поддерживает. Делаем двойной щелчок мышью и видим код С++, определяющий данный метод. Или же мы могли бы переключиться в режим, в котором сценарий взаимодействия с пользователем совмещен со схемой коммуникаций между объектами, причем объекты, участвующие в данном сценарии, выделены или подсвечены.
Систему обозначений можно легко разработать самому; очень многие так и поступают. Однако хорошую систему обозначений придумать трудно. Многие системы, которые встречаются в наших журналах, не в полной мере подходят для моделирования.
Разработка хорошей системы обозначений подобна разработке хорошего графического интерфейса. Целью здесь является сокращение нагрузки на человеческую память. Великий закон юзабилити утверждает, что система должна быть доступной для использования человеком, который знает о ее назначении, но не знаком с ее программным обеспечением. При этом не должно возникать необходимости в обучении, помощи или руководствах (Constantine, 1991 [14]). Таким образом, по-настоящему хорошая система обозначений — это такая система, которую опытный разработчик, знающий, как проектировать и писать программы, сможет интуитивно понять без шпаргалок и недельных курсов обучения. Вы не должны запоминать разные условные обозначения (например, то, что прямоугольник с двойной рамкой означает динамический объект, а прямоугольник с флажком в углу — компонент библиотеки).
Все должно выглядеть так, как оно есть. Формы символов или стили линий не могут быть какими угодно. Они не должны противоречить интуиции. Например, базовую основу, на которой с помощью наследования и повторного использования выстраиваются другие компоненты, необходимо изображать с помощью сплошных, строго очерченных элементов, а не эфемерными облаками.
Сильные связи между частями должны выглядеть, как сильные связи; слабые связи должны выглядеть, как более слабые. Устойчивые объекты должны быть показаны сплошными фигурами, а динамические объекты должны выражать смысл активности или изменяемости. Например, наследование одним классом свойств и характеристик другого класса означает, что подкласс в большой степени зависит от родительского класса — подобно тому как генетические особенности ребенка сильно зависят от особенностей обоих родителей. Для точного отражения характеристик программного обеспечения, использующего наследование, этот механизм должен быть показан более четко, чем передача сообщения объекту или ссылка на него как на атрибут (Page-Jones, Constantine и Weiss, 1990 [57]).
Сделать систему обозначений интуитивно понятной и простой в изучении помогут небольшие детали. В системе обозначений для объектно-ориентированных программ, разработанной Джекобсоном (Jacobson и др., 1992 [44]), те объекты, которые взаимодействуют с внешним окружением, на одной стороне имеют символ (- в качестве визуального ключа, обозначающего это взаимодействие. Динамические объекты, которые управляют последовательностью действий, снабжены стрелкой, входящей в границу, что означает цикл или итерацию. В нескольких системах обозначений внутренние элементы компонентов, которые доступны извне, показаны в виде расширений границы компонента.
Кроме того, хорошая система обозначений основана на том, что разработчики уже знают. Главным образом в ней применяются обозначения, знакомые разработчикам. Другими словами, не следует использовать новые символы для давно известных понятий, а старые обозначения — для новых и несовместимых идей. На самом деле чаще всего нам и не нужны новые обозначения. Наши усилия следует направить в основном на стандартизацию и упорядочивание того, что уже имеется, с применением разумных принципов моделирования и человеческого мышления.
Подумайте об этом.
Из журнала Software Development, том 2, № 3, март 1994 г.
21
Методичное сумасшествие
Каждая модель привносит свой собственный метод, как будто всех этих бессловесных схем недостаточно, чтобы похоронить под собой загруженного программиста. Структурные методы уже не вызывают особого интереса, однако в желающих написать книги, статьи и поучаствовать в конференциях, недостатка не ощущается. Эти новейшие, наилучшие методы позволяют упростить разработку и повторно использовать объекты для прототипов, но даже в самых радикальных методах разработки многое кажется знакомым.
В методах, применяемых при создании программ, нет никакой тайны. Вы тоже можете стать методистом в области программного обеспечения, даже не учась на заочных курсах. Какие бы названия методов не использовались — структурный анализ и проектирование, информационный инжиниринг, круговой гештальт, объектно-ориентированное или простое процедурное программирование — во всех книгах и разговорах, посвященных этому, все сводится к системному решению задач. Предоставляя возможности для упорядоченного применения моделей и инструментов, методы помогают сделать процесс разработки типовым, а значит, более простым в изучении и доступным для детализирования и усовершенствования.
В основе всех основных методов анализа и проектирования программного обеспечения лежит очень небольшой набор базовых принципов, которые постоянно открываются заново и описываются новыми словами, но речь по-прежнему идет о все том же старом гуталине. Суть дела заключается в том, как люди решают сложные задачи. Все методы разработки программного обеспечения базируются на пяти принципах: (1) упорядочен-ное продвижение, (2) решение с помощью разбиения, (3) независимость компонентов, (4) целостность компонентов, (5) структурное соответствие.
Читать дальшеИнтервал:
Закладка: