Том Вандербильт - ЦА. Как найти свою целевую аудиторию и стать для нее магнитом

Тут можно читать онлайн Том Вандербильт - ЦА. Как найти свою целевую аудиторию и стать для нее магнитом - бесплатно ознакомительный отрывок. Жанр: Маркетинг, PR, реклама, издательство Литагент 5 редакция «БОМБОРА», год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ЦА. Как найти свою целевую аудиторию и стать для нее магнитом
  • Автор:
  • Жанр:
  • Издательство:
    Литагент 5 редакция «БОМБОРА»
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-699-92973-3
  • Рейтинг:
    3.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Том Вандербильт - ЦА. Как найти свою целевую аудиторию и стать для нее магнитом краткое содержание

ЦА. Как найти свою целевую аудиторию и стать для нее магнитом - описание и краткое содержание, автор Том Вандербильт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В эпоху безграничного выбора среди брендов и китайских аналогов понравиться становится все сложнее. Конкуренты не упустят шанса вырваться вперед и отжать рынок. Том Вандербильт, исследователь человеческого поведения в области маркетинга и психологии, уверен: вкус можно не только предвидеть, но и управлять им. В книге он раскрывает, как определить своего главного покупателя и максимально эффективно презентовать продукт/услугу своей целевой аудитории.

ЦА. Как найти свою целевую аудиторию и стать для нее магнитом - читать онлайн бесплатно ознакомительный отрывок

ЦА. Как найти свою целевую аудиторию и стать для нее магнитом - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Том Вандербильт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот почему я уже практически слышал, как скрипит мое перо по бумаге, когда уселся напротив вице-президента по новым разработкам Тода Елина в переговорной «Лучший стрелок» (все офисные помещения Netflix носят названия фильмов или телешоу) и он начал свой рассказ: «Моя первая должность в компании – директор по персонализации продукта. Я возглавил работы по получению оценок, по улучшению прогнозов на основании этих оценок; мы придумывали, где именно в пользовательском интерфейсе их надо размещать». Что ж, полет нормальный. Затем он сказал: «Со временем, при расширении области персонализации, мы стали придавать прогнозируемым оценкам гораздо меньшее значение».

Потребовалось некоторое время, чтобы до меня дошло. Меньшее значение?! Видимо, в тот момент я выглядел слегка пришибленным. Думаю, Елин почувствовал мое разочарование. Я приехал, чтобы узнать о самом сложном в мире техническом средстве прогнозирования вкусовых предпочтений в кино, а мне говорят, что вопросам вкуса – по крайней мере выраженным с помощью рейтингов – здесь придают «меньшее значение»! «Нигде во Вселенной не жмут так много на «звездочки» фильмов и телешоу, как у нас! – рассказал Елин. – И мы разработали множество алгоритмов для повышения точности этих предсказаний». Но, как он сказал, это было «последним писком» году этак в 2005-м или в 2006-м. И мои смешные вопросы о «звездочках» тут же стали ужасно отдавать стариной. Значит, вложив такую бездну времени и усилий в постройку совершенной системы рекомендаций на базе оценок, Netflix от нее отказалась?

Не совсем. «Люди по-прежнему выставляют оценки, мы считаем эту информацию полезной. Просто она – второстепенная», – говорит Елин. Случилось сразу две вещи, которые затмили пользу «звездочек». Первая, как рассказал Ксавье Аматриайн, руководитель по системе рекомендаций, – компания вплотную приблизилась к некоей конечной скорости прогнозирования вкусов. «Как часто бывает при работе с алгоритмами, – рассказал он, – 20 % времени уходит на достижение 90-процентной точности; а затем уже 80 % времени уйдет на обеспечение оставшихся 10 % точности». Было совершенно непонятно, стоит ли инвестировать в работу над этими оставшимися 10 %, что привело бы к еще большему усложнению рекомендательной системы, в которой и без того уже работала и «Ограниченная машина Больтцмана», имелись и «Случайные леса», и «Латентные размещения Дрихле», – будет ли это оправданно?

Поменялось и еще кое-что. С тех пор как Netflix объявила состязание программистов с крупным призом, компания вместо услуг проката DVD по почте стала заниматься предоставлением онлайн-услуг потокового видео. «Люди, которые давали свои оценки, отражали таким образом свой мыслительный процесс. Вы добавляете что-то в очередь просмотра, а просматриваете пару дней спустя. А затем выражаете мнение, которое возымеет эффект в долгосрочной перспективе. При потоковой передаче данных концепция совершенно меняется. Вам не нравится? Ну и ладно – переключаем и смотрим что-нибудь другое. Затрат на переключение у вас практически нет», – рассказал Аматриайн.

При оказании потоковых онлайн-услуг Netflix получает меньше формально выраженных оценок, зато имеет место косвенная информация – это поведение пользователей. «У нас появилась возможность получения данных по просмотрам в реальном времени, а это гораздо более ценная информация, чем то, что говорят сами пользователи о своих предпочтениях», – объясняет Елин. В Netflix бесконечно больше знают о том, что и как вы смотрите: когда вы смотрите, где вы смотрите, в какой момент прекращаете смотреть, что смотрите потом, пересматриваете ли. Что вы ищете – это еще один сигнал вашего вкуса. Елин заинтересованно, почти страстно мне об этом рассказывает. Он слегка тараторит, у него немного угловатый, напряженный взгляд, он лысоват – и всем своим видом напоминает гиперинформированного консультанта из магазина видеокассет ушедшей эпохи. Но только это консультант всемогущий, он знает, что крутит на своих «видаках» вся страна – и в какие моменты нажимает на «перемотку». Пусть это и выглядит как вмешательство в личную жизнь, но главный момент здесь такой: от своего вкуса не спрячешься!

Появление компаний вроде Netflix, обладающих петабайтами данных о людских симпатиях и антипатиях в виде всех этих «лайков» и «избранных», позволило бросить взгляд в до этого всегда казавшуюся непроницаемой область: как формируются оценки, как выражаются предпочтения, каковы механизмы формирования вкуса? Обширное поле сетевой активности – сетевое «сарафанное радио». Вот где абстрактные, «непостижимые» вкусы попадают в эмпирически формируемую упорядоченность Интернета, с его алгоритмами совместной фильтрации, пространными наборами данных, бесконечными отчетами по произведенным действиям. Любая отдельно взятая рецензия или отдельный «лайк» совершенно бесполезны. Тут же возникает проблема «слово не деньги», как ее обозначил Рей Фишман. И лишь на агрегированном уровне с помощью чистой математики можно отфильтровать шум, отбросить аномальные значения и достичь статистической согласованности данных.

Социологи вроде Пьера Бурдьё, посвятившие размышлениям о вкусе огромное количество времени (мы еще вспомним о нем позже), всегда сталкивались с проблемой «рассказчика»: спросить людей о том, что им нравится, совсем не то, что наблюдать за их действиями. Интернет прекрасен в том плане, что вне зависимости от того, что люди рассказывают, можно наблюдать со все возрастающей достоверностью за их реальным поведением. Практически любой из интересовавших Бурдьё аспектов человеческого вкуса ежедневно каталогизируется онлайн, причем в объемах, превосходящих любые мечты социологов. Какая музыка нравится? Посмотрите на Spotify, Pandora. Как выглядит идеальное человеческое лицо? Посмотрите OKCupid, Match.com. Какие фото нравятся больше всего? Посмотрите Flickr и Instagram.

Так что, если раньше Netflix полагался на слова людей о том, что им нравится – на этом для того времени новом основании базировались все системы рекомендаций [85], – теперь компания стала фокусировать внимание на том, что люди реально смотрят. «В таком подходе заключена масса преимуществ. Одно из них в том, как именно люди выставляют оценки: это делается в духе мотивации – они оценивают, что и как им бы хотелось смотреть», – говорит Аматриайн. Как рассказал Карлос Гомес-Юриб, директор по новым продуктам Netflix, «относительно высокий процент людей рассказывают, что они часто смотрят иностранные или документальные фильмы. На самом деле это не так».

В Netflix всегда подозревали об этом расхождении между людскими стремлениями и реальным поведением. Можно привести один пример: компания обладала данными по длительности нахождения прокатного DVD дома у пользователя, то есть сколько времени проходило с момента получения диска до реального просмотра. «Неудобная правда» Альберта Гора лежала без движения, кажется, бесконечно! «Этот фильм дольше всех находился по домам в ожидании просмотра», – рассказал Елин, и все остальные за столом согласно закивали. Но теперь критическое рассмотрение данных идет практически в реальном времени, чуть ли не на уровне людского подсознания: вы только что выключили фильм Бергмана и включили «Вышибалу»? Так и запишем в базу данных.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Том Вандербильт читать все книги автора по порядку

Том Вандербильт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ЦА. Как найти свою целевую аудиторию и стать для нее магнитом отзывы


Отзывы читателей о книге ЦА. Как найти свою целевую аудиторию и стать для нее магнитом, автор: Том Вандербильт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x