Чарльз Уилан - Голая статистика. Самая интересная книга о самой скучной науке

Тут можно читать онлайн Чарльз Уилан - Голая статистика. Самая интересная книга о самой скучной науке - бесплатно ознакомительный отрывок. Жанр: О бизнесе популярно, издательство Array Литагент «МИФ без БК», год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Голая статистика. Самая интересная книга о самой скучной науке
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «МИФ без БК»
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00057-953-4
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Чарльз Уилан - Голая статистика. Самая интересная книга о самой скучной науке краткое содержание

Голая статистика. Самая интересная книга о самой скучной науке - описание и краткое содержание, автор Чарльз Уилан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Статистика помогает принимать важные решения, находить скрытые взаимосвязи между явлениями, лучше понимать ситуацию в бизнесе и на рынке. Автор книги профессор Чарльз Уилан с юмором и блестящими наглядными примерами рассказывает о том, как это происходит.
Эта книга будет полезной для студентов, которые не любят и не понимают статистику, но хотят в ней разобраться; маркетологов, менеджеров и аналитиков, которые хотят понимать статистические показатели и анализировать данные; а также для всех, кому интересно, как устроена статистика.

Голая статистика. Самая интересная книга о самой скучной науке - читать онлайн бесплатно ознакомительный отрывок

Голая статистика. Самая интересная книга о самой скучной науке - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Чарльз Уилан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А именно:

Для любой совокупности из n наблюдений x 1, x 2, x 3… x nсо средним значением μ
Дисперсия = σ² = [(x 1–μ)² + (x 2 – μ)² + (x 3 – μ)² + … (x n – μ)²] / n

Поскольку разница между каждым членом и средним значением возводится в квадрат, формула для вычисления дисперсии присваивает определенный вес наблюдениям, которые расположены вдали от среднего значения (то есть «отщепенцам»), как показано в приведенной ниже таблице роста учащихся.

Абсолютное значение это расстояние между двумя числами независимо от знака - фото 6 Абсолютное значение это расстояние между двумя числами независимо от знака - фото 7

* Абсолютное значение – это расстояние между двумя числами, независимо от знака разности между ними, то есть это значение всегда положительное. В данном случае оно представляет собой разницу в дюймах между ростом конкретного человека и средним значением.

Средний рост обеих групп учащихся составляет 70 дюймов. Суммы абсолютных отклонений от среднего значения в обеих группах также одинаковы – 14 дюймов. По этому показателю разброса указанные два распределения идентичны. Однако дисперсия для группы 2 оказалась выше из-за веса, присвоенного в формуле дисперсии значениям, которые расположены особенно далеко от среднего значения (в нашем случае эти значения относятся к Сах а р и Нарцисо).

Дисперсия сама по себе редко используется в качестве описательной статистики. В наибольшей степени она полезна как один из шагов в направлении вычисления среднеквадратического (стандартного) отклонения интересующего нас распределения, которое, как описательная статистика, является более интуитивно понятным инструментом.

Среднеквадратическое отклонение для совокупности наблюдений представляет собой корень квадратный из дисперсии:

Для любой совокупности из n наблюдений x 1, x 2, x 3… x nсо средним значением µ среднеквадратическое отклонение = σ = корню квадратному из этой величины =√([( x 1–μ)² + ( x 2 – μ)² + ( x 3 – μ)² + … ( x n – μ)²] / n)

3. Дезориентирующее описание

«Он – выдающаяся личность!» и другие истинные, но вводящие в заблуждение утверждения

Каждого, кому когда-либо приходилось выбирать себе спутника жизни, фраза «Он – выдающаяся личность!» обычно заставляет насторожиться – и вовсе не потому, что такое описание не соответствует действительности, а потому, что за подобным заявлением человек может что-то скрывать, например факт отсидки в тюрьме или «не до конца» оформленный развод с бывшей женой. Мы не сомневаемся, что этот парень и впрямь выдающаяся личность, но беспокоимся о том, чтобы справедливое в принципе утверждение не использовалось в качестве ширмы с целью замаскировать информацию, выставляющую лицо, о котором идет речь, в неприглядном свете, и тем самым не вводило нас в заблуждение (предполагается, что большинство женщин предпочло бы не встречаться с бывшими уголовниками и брачными аферистами). Утверждение «Он – выдающаяся личность!» само по себе не является ложью (то есть это не повод обвинить в лжесвидетельстве), тем не менее оно может быть настолько неточным, что в конечном счете не будет соответствовать действительности.

То же самое касается и статистики. Несмотря на то что статистика как область знаний коренится в математике, а математика, как известно, относится к числу точных наук, использование статистики для описания сложных явлений не может быть точным. Это оставляет немалый простор для манипуляций и искажения реального положения вещей. Марк Твен сказал однажды фразу, ставшую впоследствии знаменитой: «Есть три вида лжи: ложь, наглая ложь и статистика» [14]. Как объясняется в предыдущей главе, большинство явлений можно описать множеством разных способов. Если существуют разные способы описания одного и того же явления (например, «он – выдающаяся личность» или «он был осужден за мошенничество с ценными бумагами»), то описательные статистики, которые мы используем (или не используем) при этом, будут оказывать огромное влияние на итоговое впечатление. Кто-то из гнусных побуждений может обыграть даже самые невинные факты и численные показатели ради весьма сомнительных выводов, не имеющих ничего общего с реальной ситуацией.

Для начала давайте определим разницу между такими понятиями, как «точность» и «достоверность». Они не взаимозаменяемы. Словом «точность» мы обозначаем математическую точность того или иного явления. В описании протяженности вашего маршрута от дома до работы значение 41,6 мили будет более точным, чем «примерно 40 миль», которое, в свою очередь, намного точнее словосочетания «этот чертовски долгий путь на работу». Если вы спросите меня, как далеко до ближайшей автозаправки, я отвечу, что до нее 1,265 мили на восток. Это будет точный ответ. Но есть один нюанс: он может оказаться совершенно неточным, если вы ошибетесь в определении направления движения и поедете не строго на восток, а слегка отклонитесь. С другой стороны, если я скажу вам: «Едьте примерно десять минут, пока не увидите закусочную, а еще через пару сотен ярдов справа будет АЗС. Но если на вашем пути встретится ресторанчик Hooters, значит, вы уже проскочили автозаправку», то мой ответ окажется менее точным, чем «1,265 мили на восток», но более содержательным и полезным, поскольку я указал вам путь именно в направлении АЗС. Достоверность – это показатель того, соответствует ли истине рассматриваемое численное значение. Отсюда опасность путаницы между точностью и достоверностью. Если какой-либо ответ достоверный (правильный), то чем больше точность, тем, как правило, лучше. Однако даже самая высокая точность не в состоянии компенсировать недостоверности ответа.

На самом деле точность может маскировать – случайно или вполне намеренно – недостоверность, вызывая у нас ложное ощущение определенности. Паранойя, охватившая Джозефа Маккарти, сенатора от штата Висконсин и ярого антикоммуниста, достигла своего апогея в 1950 году, когда он не только утверждал, что в Госдепартамент США внедрились коммунисты, но и доказывал, что располагает поименным списком этих людей. Во время своего выступления в г. Уиллинг Маккарти потрясал в воздухе листком бумаги, заявляя: «Я держу в руке список из 205 фамилий членов Коммунистической партии. Они известны госсекретарю. Тем не менее эти люди продолжают работать в Госдепе, более того, они формируют внешнюю политику страны!» {12}Впоследствии выяснилось, что Маккарти держал в руке чистый листок бумаги, однако указание точного числа (205) придало словам сенатора б о льшую достоверность, несмотря на столь наглую ложь.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Уилан читать все книги автора по порядку

Чарльз Уилан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Голая статистика. Самая интересная книга о самой скучной науке отзывы


Отзывы читателей о книге Голая статистика. Самая интересная книга о самой скучной науке, автор: Чарльз Уилан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x