Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов
- Название:Как вытащить из данных максимум. Навыки аналитики для неспециалистов
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2022
- Город:Москва
- ISBN:978-5-9614-7563-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов краткое содержание
Для тех, кто хочет научиться говорить на языке данных уверенно, признанный эксперт в области дата-грамотности Джордан Морроу и написал свою книгу. Это практическое руководство позволит даже неспециалисту освоить четыре базовых уровня аналитики и узнать, как принимать эффективные решения на основе данных, чтобы извлекать максимум из информации и быть успешным в быстро меняющемся цифровом мире.
Как вытащить из данных максимум. Навыки аналитики для неспециалистов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Итак, организации, данные и дата-аналитика: исторический аспект. Организации всегда вкладывали много средств в технологии, программное обеспечение и инструменты работы с данными. ПО и технологии считались манной небесной, все были уверены, что с их помощью можно найти любые решения в области данных и аналитики. Руководители инвестировали в технологии, которые могли помочь им добиться целей и воплотить в жизнь самые смелые мечты из области данных и дата-аналитики (а такие мечты у руководителей есть всегда). Со времен появления самой первой версии Microsoft Excel в 1985 году [15] CIS Poly. History of Microsoft Excel. http://cis.poly.edu/~mleung/CS394/f06/week01/Excel_history.html .
(кстати, если вы не в курсе, то сначала эту программу выпустили для Apple Macintosh – странно, правда?) и даже более раннего ПО для электронных таблиц организации постоянно покупали либо продавали ПО, считая, что оно способно все решить, творя некую «магию». Итак, давным-давно существует ПО для хранения, использования и анализа данных и информации. По мере развития и совершенствования технологий также росли и инвестиции в них. По прогнозам, в 2019 году доходы, полученные во всем мире от анализа больших объемов данных и бизнес-информации, должны были составить 187 миллиардов долларов [16] Olavsrud, T. (2016). Big Data and Analytics Spending to hit $187 Billion, CIO, 24 May. https://www.cio.com/article/3074238/big-data-and-analytics-spending-to-hit-187-billion.html .
. Этот рынок продолжает развиваться столь же бурно… однако существует и неприятная тенденция. Учитывая нехватку знаний у 24 % людей, ответственных за принятие бизнес-решений, и у 32 % топ-менеджеров, инвестиции в технологии сбора и анализа данных не приносят ожидаемых результатов. Эта нехватка знаний, о которой мы говорили в первой главе, мешает инвестициям приносить свои плоды.
Итак, каким же образом понимание четырех уровней аналитических методов влияет на грамотное внедрение технологий и возврат инвестиций в данные и аналитику? Когда организации и сотрудники разберутся, как работают все четыре уровня, это позволит понять, как коллектив и отдельные сотрудники со своими индивидуальными навыками при посредстве технических возможностей могут совместно построить правильную стратегию работы с данными и дата-аналитикой. А затем эту стратегию можно будет применить.
Четыре уровня аналитических методов
А сейчас, после краткого экскурса в историю, давайте попробуем разобраться в самих четырех уровнях аналитики. Затем мы покажем вам, как сотрудники на самых разных уровнях, от рядовых работников до топ-менеджеров, могут применять эти четыре уровня: 1) для продвижения стратегии работы с данными и аналитикой; 2) для принятия более разумных решений на основе данных; 3) для формирования правильного видения данных и аналитики. Понимание четырех уровней аналитики позволяет организации не стрелять по мишени вслепую, а осуществлять реальную работу по формированию стратегии.
Как уже говорилось выше, четыре уровня аналитических методов – это дескриптивный, диагностический, предиктивный и прескриптивный (см. рис. 2.1). Чтобы получить прочные базовые представления о каждом уровне, давайте для начала рассмотрим их определения и примеры. Кроме того, мы также познакомимся с конкретными программами и технологиями, соответствующими каждому уровню. Затем, разобравшись с каждым уровнем, мы увидим, как они работают в комплексе: формируют правильную аналитическую картину и помогают организации успешно освоить инвестиции в данные.

Прежде чем перейти к первому уровню, давайте разберемся, что на самом деле в нашем контексте означает слово «аналитика». Мы слышим его постоянно, но известно ли нам его истинное значение?
Если взглянуть на определение нужного нам значения слова «аналитика», то окажется, что аналитика – это «систематический вычислительный анализ данных или статистики» [17] Lexico.com, определение Analytics. https://www.lexico.com/en/definition/analytics .
.
И что же это такое? Взглянем на определение слова «анализ»: это подробное изучение элементов или структуры чего-либо. В мире данных и аналитики анализ – это способность глубоко «закапываться» в данные, понимая , что они нам говорят. Данные – это не всегда цифры, они могут представлять собой слова, символы и прочие элементы. Если мы понимаем, что говорят нам данные, то затем можем рассмотреть, каковы их элементы и структурные особенности, а также сделать с ними многое другое. Аналитика позволяет нам принимать более удачные решения, задавать более правильные вопросы и эффективно использовать имеющиеся у нас данные.
Четыре уровня аналитических методов – дескриптивный, диагностический, предиктивный и прескриптивный – помогают организациям по-настоящему разбираться в данных и информации, которые они получают, накапливают и используют для принятия бизнес-решений, совершенствования рабочих процессов и достижения успеха. Аналитические методы критически необходимы для успеха организации в современном цифровом мире, управляемом данными.
Уровень 1: дескриптивные (описательные) аналитические методы
Первый уровень анализа – это уровень дескриптивных (или описательных) методов.
Согласно одному из определений, «описание» означает «словесное изображение чего-либо или кого-либо, включающее все важные характеристики, качества или свойства».
Ну и что все это значит? В данном случае описательный метод – это метод, описывающий то, что имело или имеет место. Иными словами, дескриптивный анализ позволяет нам оглянуться на то, что уже произошло в бизнесе, и изучить это при помощи данных.
Однако это не всегда дает нам наиболее четкую картину. Чтобы ее уточнить, существуют другие методы – например, отчеты, работа со сводками или информационными панелями, наблюдения. Наверное, все это знакомо каждому из вас. Как часто на совещаниях или в рабочей электронной переписке упоминается слово «отчет»? Как часто мы видим сводки, KPI (ключевые показатели эффективности) и т. д.? Все эти понятия стали для нас такими обыденными, что сами слетают с языка, но они действительно необходимы для полного понимания описательного анализа. Описательный анализ строится на отчетах, сводках и наблюдениях, которые помогают выяснить, что происходило с организацией до этого момента или происходит прямо сейчас.
Научившись правильному применению методов описательного анализа, мы сможем понять и изучить роль, которую он играет в этой мозаике – в стратегии работы с данными. Но поможет ли это собрать всю мозаику? Здесь нужно учесть один ключевой момент: описательный анализ часто представляет для организаций серьезную проблему. Казалось бы, почему? Принципиальное отличие этого уровня аналитики от остальных в том, что только на нем организация может застрять – то есть не пойти дальше, чтобы освоить остальные преимущества работы с данными.
Читать дальшеИнтервал:
Закладка: