Александр Бакулин - Гравитация и эфир
- Название:Гравитация и эфир
- Автор:
- Жанр:
- Издательство:Array SelfPub.ru
- Год:2019
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Бакулин - Гравитация и эфир краткое содержание
Гравитация и эфир - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

как функцию времени, подвергнуть далее преобразованию Фурье, то мы получим тот спектр того фотона, который излучил атом в данном его переходном процессе. И именно этот спектр видят всегда физики-спектроскописты, исследующие, например, нагретый газ водорода. В реальности они видят спектр, излучаемый не одним атомом (формулы Бора или Бальмера говорят о спектре единичного атома), но сразу многими атомами. То есть они видят как бы сумму многих и многих огибающих В частности, если предположить, что все эти атомы возбуждаются точно так, как показано у нас на рисунке 21.9, то они увидят лишь одну линию этого спектра, примерно соответствующую линии перехода в атоме водорода между орбитой 2 (Бор говорит – «между уровнем энергии квантового числа n = 2») и орбитой 1 (на этой последней терминологии – «орбита 1» – мы можем уже настаивать в нашей квантовой физике). То есть время переходного процесса огибающей (
) обязано соответствовать той планковской частоте ν в знаменитой формуле Планка,

где частота ν будет соответствовать конкретной единичной спектральной линии, которую видят в микроскопы спектроскописты в виде-образе «длины волны». Эта «длина волны» – это расстояние между последовательными светлыми линиями (именно эти «светлые линии» видят в микроскоп исследователи). Измерив же это расстояние – как длину волны колебательного процесса, воспринимаемого «на глаз» в виде светлых и тёмных полосок в окуляре микроскопа, они вычисляют частоту этого процесса (как какого-нибудь светового луча данной частоты, падающего на экран – «измерительную дифракционную решётку»), по формуле:

Ниже по тексту мы приведём конкретную методику вычисления конкретной спектральной линии.
Ещё раз, но уже – более понятно для школьника, то есть – без обращения к фурье-преобразованиям. Глядя на нижнюю диаграмму рисунка 21.9, мы видим то, как атом, быстро возбудившись, затем «медленно» успокаивается. При этом электрон движется по эллипсо-подобной орбите, медленно приближаясь «круг за кругом» к первой круговой атомной орбите. В переходном процессе левого атома электрон большую часть времени смещён в сторону пробного заряда точки 5, то есть атом суммой двух «зарядов» (электрона и протона) излучает всегда усреднённую отрицательную амплитуду поля E . В правом атоме электрон в среднем смещён дальше от точки 5, чем «стоящий на месте» положительный протон. Поэтому здесь атом излучает усреднённое положительное поле для точки 5. То есть в среднем за весь переходный процесс левый атом будет излучать в точку 5 только сплошь отрицательные кванты энергии, а правый атом – только положительные кванты энергии. Но спектроскописты никогда не видят излучение отдельного атома. Они воспринимают процесс излучения сразу многих атомов. А эти возбуждения большого количества атомов всегда подчинены закону больших чисел. Который говорит о том, что, например, в газе число «положительных» атомов, излучающих в данное мгновение положительный квант энергии в точку наблюдения за газом, с большой степенью точности равно числу «отрицательных» атомов, излучающих в эту же точку в это же мгновение «отрицательные» кванты энергии.
Поэтому общий поток фотонов, падающих на измерительный прибор физиков (например, на дифракционную решётку) будет состоять из большого количества положительных и отрицательных полуволн – как отдельных положительных и отрицательных «квантов энергии». И поскольку этих положительно-отрицательных пар квантов энергии будет, с большой степенью точности, одинаковое количество, то их сумму можно выстраивать-рассматривать в виде некоторого непрерывного (а на самом деле – чётко прерывного) синусоидального сигнала. Частота этой суммарной синусоиды будет соответствовать двум полу-периодам огибающей переходного атомного процесса. То есть полупериод этой синусоиды (именно полупериод, а не полный период) будет говорить о том, за какое время успокаивается переходный процесс после каждого возбуждения каждого конкретного атома.
Но чем могут быть вызваны те источники возбуждений в газе, которые в виде квантов энергии у нас на рисунке налетают на электроны точек 1 из точек 4? В простейшем случае они могут быть вызваны, например, процессами столкновений отдельных атомов в газе водорода. Атомы сталкиваются друг с другом своими отрицательными «электронными облаками». То есть к орбитальному электрону данного атома сначала приближается орбитальный электрон другого атома, который излучает в сторону первого (в ближней зоне между двумя близкими почти соприкасающимися атомами) свой «квант энергии» отрицательной полярности, то есть тот квант, о котором мы говорили в самом начале пояснений, касающихся рисунка 21.9.
Примерно такая же качественная картина возбуждений атомов будет и в любом нагретом веществе, включая вещество, например, металлов. Только там атомы, грубо говоря, «стоят на месте». Но между ними постоянно бегают внутри металла гигантское количество всевозможных квантов энергии (фотонов), всегда поддерживающих абсолютно все атомы металла в тех или иных возбуждённых состояниях. Причём при данной температуре эти возбуждённые состояния атомов по любому выделенному там линейному направлению носят строго периодический характер. То есть в любом выделенном направлении излучается свой определённый поток своих особых квантов энергии, говорящих об особых переходных процессах атомов металла в данной цепочке данного направления в структуре металла.
Таким образом, мы видим, что квантовая физика (как классическая теория) способна вернуть физиков из их вероятностной квантовой механики к временнóму описанию всех процессов, происходящих в любом участке любого вещества. Причём она может это выполнить досконально точно для любого выделенного дискрета времени изучаемого процесса.
Итак, мы утверждаем, что в любом случае любой фотон, излучаемый атомом в любом режиме работы атома (стационарном или возбуждённом) представляет собой сложный радиотехническийсигнал с АФИМмодуляцией (амплитудно-фазово-импульсная модуляция). Все попытки чистых математиков, не знакомых или плохо знакомых с радиотехникой, приводили и приводят их к непониманию того, чем является у Природы обычный фотон обычного света, мириадами фотонов которого мы окружены в каждую секунду нашей жизни. Если же к этому добавить главный фактор непонимания физиками фотона, а именно то, из чего у Природы сделан фотон (из квантов-частиц эфира), то одно только это непонимание фундаментаквантовой физики даёт красноречивое объяснение причины жестокого кризиса, поразившего физику в последний век её развития.
Читать дальшеИнтервал:
Закладка: