Александр Бакулин - Гравитация и эфир

Тут можно читать онлайн Александр Бакулин - Гравитация и эфир - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство Array SelfPub.ru, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Бакулин - Гравитация и эфир краткое содержание

Гравитация и эфир - описание и краткое содержание, автор Александр Бакулин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга перевернёт представление людей о том мире, в котором мы живём.В теорию о Вселенной вновь возвращается её главный элемент – эфир, преданный физиками 100 лет назад, но являющийся именно той "тёмной материей", которую долго ищут и не могут найти физики. Здесь главенствует не чисто математическая теория физиков, строящая Вселенную из позорной "точки", но Здравый Смысл, выявляющий гигантское количество заблуждений и ошибок физиков.Книга написана языком, доступным для понимания даже школьниками старших классов, с привлечением только четырёх законов Ньютона и простой школьной математики.

Гравитация и эфир - читать онлайн бесплатно ознакомительный отрывок

Гравитация и эфир - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Бакулин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Это фактически скорость звука 340 Поэтому замедлив электрон в миллион - фото 992

Это – фактически скорость звука (340 картинка 993). Поэтому, замедлив электрон в миллион раз, мы получаем выигрыш по отношению к «количеству движения» элемента детектора (электрона) в миллион раз. А по энергии электрона получаем выигрыш в Гравитация и эфир - изображение 994раз. То есть мы делаем электрон крайне «невесомым», а значит – подверженным «лёгкому дуновению ветерка». И если поместим электрон, допустим, в 6-ти метровую металлическую трубу (цилиндр), защищающую электрон от внешних электромагнитных полей, да с откачанным из неё воздухом (что желательно, но не обязательно), то можем запускать в ней по её оси череду одиночных электронов (или даже пачки-пучки электронов), следующих со скоростью, допустим, 300 метров в секунду и пробегающих путь в трубе за время

Но почему же физики не говорят об электроне как о возможном кандидате на - фото 995

Но почему же физики не говорят об электроне, как о возможном кандидате на главный элемент гравитационного детектора? Потому что они не знают, что такое фотон. Поэтому не знают, чем он хорош, и чем он плох.

Зачем нам нужна труба-цилиндр? Она служит лишь усилителемотклонения электрона, испущенного из какого-то самого простейшего линейного ускорителя (ускорителя до малой скорости 300 м/сек). В зависимости от того, каким гравитационным полем мы будем «освещать» трубу-цилиндр, соответствующим будет и поведение (отклонение) электрона.

Оценим преимущество использования в качестве «гравитационного детектора» – медленного электрона перед быстрым квантом лазерного луча. Итак, для электрона, замедленного до скорости 300 м/сек, его инерционность, как инерционность не релятивистской, то есть, низко-скоростной частицы, будет определяться параметром – «количество движения»:

Для единичного же кванта из множества которых состоит лазерный луч этот - фото 996

Для единичного же кванта, из множества которых состоит лазерный луч, этот параметр равен:

То есть луч лазера в раз более инерционен чем медленный электрон И поэтому он - фото 997

То есть луч лазера в картинка 998раз более инерционен, чем медленный электрон. И поэтому он будет отклоняться каждым направленным на него гравитационным квантом в картинка 999раз меньше, говоря физикам о том, что по крайней мере по этому параметру использовать его в качестве детектора, реагирующего на гравитацию, нежелательно.

Оценим теперь инерционность единичного гравитационного кванта:

Мы видим что маленький единичный гравитационный квант на 2 порядка более - фото 1000 Мы видим что маленький единичный гравитационный квант на 2 порядка более - фото 1001

Мы видим, что маленький единичный гравитационный квант на 2 порядка более инерционен, чем квант луча лазера и на 8 порядков более инерционен, чем медленный электрон. Поэтому с точки зрения получения хорошей эффективности отклонения направленнойгравитацией единичного элемента измерительного «гравитационного детектора», эту гравитацию остаётся только грамотно направитьв нужное время в нужное место. А учитывая тот фактор, что плотность гравитационного вакуума Гравитация и эфир - изображение 1002почти на 6 порядков больше плотности электромагнитного Гравитация и эфир - изображение 1003а следовательно, частота – последовательность гравитационного «кванта энергии», как направленного потока согласованных гравитационных квантов (то есть, по существу, энергия гравитационного «кванта энергии») может быть значительно выше (именно – в коротком гравитационном импульсе), чем энергия отдельных электромагнитных квантов эфира, да, к тому же, следующих с «редкой» по отношению к гравитации частотой повторения, то идея создания «лабораторной» установки гравитационного канала приёма – передачи становится не такой уж и фантастической.

Поскольку с кандидатом на роль главного элемента гравитационного детектора мы уже чётко определились (это – медленный электрон), то подумаем о том, каким должен быть гравитационный приёмник. Этих приёмников можно разработать великое множество – самых разных. Всё зависит от того, на какой гравитационный сигнал должен быть «настроен» этот приёмник. А этих «сигналов» тоже может быть великое множество. Всё зависит от того, какой объект мы выберем в качестве гравитационного передатчика или какой гравитационный передатчик создадим сами. При этом мы абсолютно уверены в том, что здесь не только физиков, но студентов и школьников будет ожидать гигантский простор для выбора ими тех или иных конструкций– как приёмников, так и передатчиков. Всем им надо только немного подсказать философией (в особенности – подсказать зацикленным на ОТО физикам).

Интересно ещё и то, что вслед за разработкой конкретных приборов первой встанет неизбежная задача: измерить скорость гравитационного излучения. Похоже на то, что тому, кто это сделает первым, непременно будет полагаться Нобелевская премия по физике. Потому что измерение такой поистине фундаментальнойвеличины – это эпохальное событие для людей – Землян.

Мы уже критиковали наших физиков в начале главы по поводу того, что в поисках гравитационного передатчика их мысль зачем-то улетела за тридевять земель. И действительно: зачем так далеко ходить, когда великолепный гравитационный передатчик висит прямо над головой у каждого физика в каждую его земную ночь? Это, конечно же, наша любимая Луна. Как же можно было не заметить этот «передатчик»? Здесь мы вспомним всё того же Крылова: «Слона-то я и не приметил». Если кто-то будет и теперь сомневаться в том, что Луна – «передатчик», то есть, излучатель гигантской гравитационной энергии, посылаемой на нашу Землю, то можно напомнить, например, о морских приливах. Эти приливы, помнится, использовал в своих прикидочных расчётах ещё сам Ньютон.

Да, конечно, физике гравитационного прилива сильно помогает гигантская сила сцепки атомов воды друг с другом, вплоть до силы поверхностного натяжения воды. А также помогает длительное притяжение гигантского массива воды в одном и том же направлении. Но ведь каждый атом воды – это всё те же орбитальные электроны да кварки в нуклонах. Причём каждый из них в отдельности заметно проигрывает нашему медленному электрону-детектору. Орбитальный электрон, со своей скоростью Гравитация и эфир - изображение 1004проигрывает на 4 порядка, а все кварки с их скоростями, почти Гравитация и эфир - изображение 1005– ровно на 6 порядков чувствительности к гравитации. Поэтому если Луна, с её гигантской массой, притягивает в свою сторону не столь чувствительные к её полю элементы атома, то одиночный медленный электрон она будет притягивать к себе заведомо (не «сильнее», но) «шустрее» – подвижнее, то есть с большим ускорением электрона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Бакулин читать все книги автора по порядку

Александр Бакулин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Гравитация и эфир отзывы


Отзывы читателей о книге Гравитация и эфир, автор: Александр Бакулин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x