Елена Сапарина - Небесный землемер
- Название:Небесный землемер
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1959
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Сапарина - Небесный землемер краткое содержание
Простой вопрос? Со времен философа древности Аристотеля и до наших дней тысячи ученых пытались ответить на него.
Для этого Землю меряли линейкой, объезжали с точнейшими часами в руках, «взвешивали», создавали математические ее модели.
Форма нашей планеты оказалась связанной с тяготением, магнетизмом, строением земных недр и движением Луны. Но точно сказать, что же именно она представляет собой, ученые не могут до сих пор. А в ответе на этот вопрос заинтересованы не только сами «землемеры». Точную форму Земли необходимо знать строителям и геологам, мореплавателям и картографам, астрономам и водителям будущих космических кораблей.
Сейчас в эти исследования включилась новая наука, родившаяся с запуском первых искусственных спутников Земли и космических ракет, — спутникия. Она дает верный ключ к решению одной из важнейших и труднейших задач, интересующих человека с первых дней его существования. Обо всем этом и рассказывает книга Е. Сапариной «Небесный землемер».
Небесный землемер - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так было обнаружено, что не только «характер» Солнца, но и своеобразный «нрав» Земли сказывается на лунном пути довольно сильно.
И неудивительно. Хотя масса Солнца по сравнению с Землей огромна — в 330 тысяч раз больше, оно находится от Луны в 400 раз дальше, чем Земля. И именно из-за такой близости на пути Луны должны сказываться не только перемены в скорости вращения Земли, но и все особенности земной фигуры, порожденные неправильностями в строении составляющих ее масс. Вызываемые ими в движении Луны «возмущения» так и называются «членами от фигуры Земли».
Через каждые 27 дней — один раз в течение звездного месяца — широта Луны изменяется на несколько секунд. Причиной этого является сплюснутость Земли — ведь когда Земля обращена к Луне вдавленным полюсом, та притягивается слабее, чем когда находится против выпуклого экватора. И хотя сила притяжения уменьшается при этом лишь на 1/1 000 000 долю, путь Луны заметно искажается.
Раз в 18½ лет сжатая Земля заставляет свою спутницу изменить долготу на целых 7 секунд.
Эти периодические отклонения от правильного пути и есть знаменитые «члены от фигуры Земли». Обозначенные каждое определенным математическим символом, они входят в громоздкое уравнение, по которому ученые вычисляют, где в будущем месяце окажется на небе Луна.
Зная же, насколько и как изменяется из-за сжатия Земли орбита Луны, можно определить и само земное сжатие. Тут возможны разные способы.
Накапливаясь в течение веков, постоянные скачки настолько изменяют лунную орбиту, что наша спутница начинает подходить к Земле на самое близкое расстояние совсем не в том месте, где раньше, и пересекать видимый путь Солнца в новых точках. По этим вековым перемещениям перигея и узлов лунной орбиты можно определить, насколько земной шар сплющен.
Но уж больно долго «накапливаются» эти вековые «возмущения» в лунной орбите. Поэтому практически они не используются геодезистами, хотя в прошлом веке сжатие Земли было определено с помощью вековых «возмущений» довольно точно. Оно получилось равным 1/ 294.
Столь же неудобно для определения формы Земли и изменение долготы Луны. Ведь никто не согласится ждать почти 19 лет, чтобы вставить в формулу одно маленькое число. Гораздо чаще при вычислении длины экваториального и полярного радиусов пользуются отклонением в широте, которое можно наблюдать ежемесячно. Наиболее точно таким способом вычислил сжатие Земли советский астроном К. Л. Баев. По его расчетам, полярный радиус оказался на 1/ 296часть длиннее экваториального.
Была у геодезистов и еще одна тайная мысль, как заставить Луну мерить Землю. Ночное светило, заглядывающее во все уголки Земли, навело их на новую идею.
Форма земных материков довольно тщательно изучена с помощью геодезической «линейки» и гравиметрической «гири». А вот с морями дело обстоит хуже. Здесь практически осуществимы лишь гравиметрические измерения.
Но, может быть, есть все-таки такая «рулетка», которая могла бы опоясать и громадный поперечник океана?
Не так давно ученые пришли к выводу, что это может сделать Луна.
И все-таки почему именно Луна?
Ранним утром 1528 года из Парижа по Большой Северной дороге выехала коляска, в которой сидел придворный врач Франциска II Жан Фернель. Но он спешил не к больному. И в чемоданчике, который он держал в руках, были не медицинские, а астрономические инструменты. Молодой врач увлекался астрономией.
Время от времени он просил кучера остановиться и измерял высоту Солнца. Фернель задумал определить длину градуса меридиана к северу от Парижа, чтобы затем заново вычислить размеры Земли. Наконец через три дня он оказался в небольшом городке Амьене. Его прибор показал, что Солнце здесь стоит в полдень ровно на один градус ниже, чем в то же время в Париже.
Фернель заночевал тут. А утром отправился в обратный путь. На этот раз он не смотрел на небо, а старательно отсчитывал обороты колеса своей коляски. До Парижа он насчитал их 17 024. Фернель вылез из коляски и измерил окружность колеса. Она оказалась равной 20 французским футам. Тогда Фернель помножил длину обода колеса на число его оборотов: получилось, что расстояние между Парижем и Амьеном равно 56 747 туазам.
Разумеется, сейчас никто не будет считать расстояние между городами по оборотам колеса, как это делал в XVI веке француз Фернель. Как измеряют расстояние в градусах, мы уже знаем. А вот чем промерить на земной поверхности сто с лишним километров, которые и составляют линейную длину градуса? Не тянуть же за собой все 100 километров рулетку.
Древние математики, придумавшие остроумный способ определения дуги в градусах, не смогли изобрести столь же удобный метод измерений линейной длины градуса, да и вообще больших расстояний. Эратосфен, когда ему понадобилось узнать, насколько Сиена отстоит от Александрии, пользовался сведениями, полученными от караванщиков, которые, как известно, считали шаги верблюда. А ученые, мерившие градус меридиана в Аравийской пустыне, на протяжении десятков километров укладывали деревянный шест.
Как же сейчас измеряют расстояние хотя бы от Риги до Владивостока — от западных до восточных границ страны?
Более удобный на практике способ мерить большие расстояния изобрел спустя почти столетие после поездки Фернеля по окрестностям Парижа голландец Снеллиус. Он предложил перенести измерения с Земли на бумагу.
Предположим, мы хотим узнать, чему равна та же дуга от Парижа до Амьена. Для этого вовсе не надо измерять все расстояние между городами. Достаточно промерить небольшой кусок — километров в десять. Затем выбрать в окрестности какой-нибудь заметный предмет, который хорошо виден из его конечных точек, и мысленно соединить концы измеренного отрезка с намеченной колокольней или башней.
Теперь достаточно измерить углы полученного треугольника, чтобы легко высчитать, чему равна другая его сторона. Ее можно взять за основание нового треугольника, избрав его вершиной соседний холм или высокое дерево.
Так, переходя от одного видного издалека предмета к другому, можно покрыть треугольниками громадную полосу на поверхности Земли — вдоль любого меридиана или параллели — и вычислить длину этих отрезков градусной сетки, не измеряя линейкой ничего, кроме самого первого куска. Все остальные расчеты производятся на бумаге, куда перенесены воображаемые треугольники.
Этот способ, получивший название триангуляции (от латинского слова триангулум, что значит «треугольник»), является основным способом измерения больших расстояний на Земле.
Первую нить треугольников протянул с севера на юг Голландии сам изобретатель нового способа измерений — Снеллиус. Бесчисленные мельницы и колокольни, видимые на плоской, как блюдечко, голландской равнине издалека, словно сами образовали естественные треугольники.
Читать дальшеИнтервал:
Закладка: