Александр Харс - Я познаю мир. Биология
- Название:Я познаю мир. Биология
- Автор:
- Жанр:
- Издательство:ООО «Издательство Астрель»
- Год:2004
- Город:Москва
- ISBN:978-5-17-020559-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Харс - Я познаю мир. Биология краткое содержание
Издание снабжено предметно–именным указателем и может использоваться как справочник при подготовке школьных рефератов и докладов.
Я познаю мир. Биология - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Объем внутриклеточных жидкостей особенно тесно связан с белками. Обычно аминокислотные цепи белковых молекул, закрученные в тугой жгут или образующие компактную «гармошку», упакованы так плотно, что «выжимают» из себя молекулы воды. В процессе происходящих с молекулами белков преобразований аминокислотные цепи становятся доступными для образования вокруг них водной оболочки. При этом меняется плотность упаковки белковых молекул, а следовательно и их объем, и значительно увеличивается количество молекул воды, участвующих в создании футляра.
Сходные процессы происходят при формировании длинных молекул: места контактов стыкующихся молекул теряют водную оболочку, а освободившиеся молекулы воды поступают в общий клеточный фонд. Таким образом, постоянно, каждую минуту, каждую секунду объем всех без исключения клеток живых существ меняется.
Незначительные изменения скорости химических процессов, которые при этом происходят, не были бы для организма чреваты неприятными последствиями, если бы одинаково сказывались на всех биохимических процессах и не вызывали бы дисбаланса. Однако может случиться (и действительно беспрерывно случается), что создание сложных веществ происходит нормально, а синтез необходимых для этого блоков существенно отстает или блоков заготавливается гораздо больше, чем нужно. В результате внутриклеточное пространство может оказаться «замусоренным» различными ненужными веществами.
Чтобы понять, что потребовалось морским организмам, чтобы они могли жить на больших глубинах, нужно познакомиться с тем, как изменились их белковые молекулы. Ведь белки – основа живых организмов.
Об этом известно немного. Очевидно лишь, что все изменения в молекулах белков служат одной цели: по возможности свести на нет опасность изменения внутриклеточного объема в процессе протекания биохимических реакций, в которых они участвуют.
Давно замечено, что при повышении давления страдает синтез белков, нарушается их сборка из отдельных «строительных» блоков. Это в первую очередь касается ферментов – ускорителей химических реакций. Для мелководных животных это главное препятствие, не позволяющее им приспособиться к жизни в более глубоководных районах. При высоком давлении естественный распад ферментов значительно преобладает над процессами сборки, в итоге осуществлять ферментативные реакции становится просто некому.
image l:href="#image194.png"
Глубоководные рыбы: А – удильщик морской чёрт; Б – стерноптикс, или рыба–топорик
Когда побывавших под «прессом» мелководных рыб возвращают в условия привычного для них давления, ферменты восстанавливают свою активность. Видимо, они монтируются скоростными методами из обломков разрушенных молекул.
Почему же ферменты глубоководных рыб не «крошатся» под прессом высокого давления? Оказывается, глубоководные рыбы пользуются простыми монолитными белками, которые не распадаются на блоки. Прочные белки, способные выносить значительное давление, существуют даже у жителей мелководий. Например, белок мышечных волокон – актин. Без него сокращение мышц, а значит, и активное передвижение в пространстве было бы невозможным. Животные вынуждены пользоваться высокопрочными сократительными белками. Иначе даже кратковременный визит в бездну мог бы обернуться катастрофой.
Высокое давление способно воздействовать и на жироподобные вещества – липиды, входящие в состав всех клеток организма и выполняющие важную роль в их мембранах. Для того чтобы липидная оболочка успешно выполняла свои функции, она должна находиться в жидкокристаллическом состоянии. Однако при понижении температуры или при повышении давления липиды твердеют. А так как на больших глубинах живые организмы встречаются сразу с обоими этими факторами, их совместное действие усиливается. Чтобы предохранить липиды от затвердевания, у глубоководных рыб и ракообразных для построения клеточных оболочек используются особые липиды, которые «плавятся» уже при температуре +2°С и не твердеют даже при давлении в 150–200 атмосфер.
image l:href="#image195.png"
Строение клеточной мембраны: 1 – двойной слой фосфолипидов; 2 – белки; 3 – углеводы, связанные с белками
Вот почему, прежде чем переселиться в океанскую бездну, животные должны были произвести полную биохимическую реконструкцию своего организма. Судя по тому, что среди подданных Посейдона нашлось немало подобных животных, ничего необычного в этом нет: к чему только ни приходилось приспосабливаться обитателям нашей планеты!
Оправданный консерватизм
Для благополучной жизни необходимо иметь запасы. Организм животных и человека в первую очередь запасает энергоносители – вещества, при распаде отдающие химическую энергию, которая может использоваться для синтеза различных веществ, преобразовываться в механическую, обеспечивая работу мышц, или в тепловую, не давая организму замерзнуть.
Обычно для удобства долгосрочного хранения углеводы и белки пищи перерабатываются в жир. Кроме жира, клетки организма запасают на текущие расходы сравнительно небольшие количества полисахарида гликогена. Только в мышечных клетках и в печени его запасы бывают чуть–чуть более значительными.
Необходимость иметь гликоген связана с тем, что жир не годится для экстренного использования. На его извлечение из жировых депо уходит много времени, кроме того, жир сложно транспортировать к месту назначения. Поэтому жир откладывается для длительного хранения, а в качестве краткосрочного энергоносителя используется гликоген. Он тоже не может переноситься кровью и не способен проходить сквозь клеточные оболочки – слишком крупны его молекулы, но зато гликоген быстро разлагается до глюкозы, а этот простейший сахар, всегда присутствующий в крови, легко проникает в любые клетки. Когда работа каких–нибудь органов усиливается и на нее тратится больше глюкозы, в печени начинается разрушение гликогена и в кровь поступают новые порции горючего.
Зачем тогда вообще запасать жир, почему бы не хранить все запасы в виде гликогена? А дело в том, что жир экономичнее: из одного грамма жира высвобождается в два раза больше энергии, чем из того же количества гликогена. Так что запасы жира компактнее, а главное легче, чем гликоген.
Вторая причина, по которой создавать большие запасы резервного гликогена нецелесообразно, – специфические особенности его хранения. Для того чтобы он мог оставаться в организме, необходимы значительные количества воды. В результате запас одного и того же количества энергии в виде гликогена будет весить в 10 раз больше запасов в виде жира. Такое могут позволить себе лишь моллюски, ползающие по дну или ведущие прикрепленный образ жизни, и некоторые другие животные, обитающие на дне океанов. Моллюскам, ведущим неподвижный образ жизни, значительное увеличение веса не приносит никаких неудобств, а воды, необходимой для удержания гликогена, вокруг сколько угодно. Поэтому моллюски способны очень быстро набирать вес.
Читать дальшеИнтервал:
Закладка: