Александр Леонович - Физика без формул
- Название:Физика без формул
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2017
- Город:Москва
- ISBN:978-5-17-100193-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Леонович - Физика без формул краткое содержание
Для среднего школьного возраста.
Физика без формул - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Действительно, откуда в них берется энергия? Если вы разберете такую зажигалку в поисках батарейки или газового баллончика, то ничего подобного не обнаружите. А найдете внутри небольшой кристалл с подсоединенными к нему проводочками. Это — кристалл кварца, который как выяснилось более 100 лет назад, обладает интересными свойствами. При сжатии его с двух сторон на других гранях возникают электрические заряды двух разных знаков, то есть создается электрическое напряжение. Именно его используют в зажигалках для создания искры.

Такое любопытное явление, названное пьезоэлектричеством, стали применять уже во время I мировой войны для обнаружения… подводных лодок. Двигаясь в воде, винт лодки создает попеременные сжатия и разрежения воды, бегущие от лодки в виде волн. Если на их пути разместить пьезоэлектрический кристалл, то он начнет колебаться под действием переменного давления и его грани станут заряжаться. Возникнет электрический сигнал, который позволит таким образом уловить шум от далекой подводной лодки.
Пьезоэлектрический эффект сегодня широко применяют в микрофонах и телефонах, для создания ультразвуковых волн, обнаружения дефектов внутри металлов и для измерения механических напряжений и вибраций.
Поле — стремительный гонец
Давайте задумаемся над вот каким вопросом. Пусть нам понадобится включить какой-то мощный электрический прибор, доступ к которому затруднен. Ну что ж, для этого мы протянем к нему провода, а кнопку или рубильник разместим в удобном нам месте. Теперь одним движением пальца щелкаем кнопкой, замыкаем цепь, и что-то там вдалеке зажглось, завращалось, загрохотало, поехало…
Как вы считаете, когда мы замкнули цепь, заряды от нас сразу помчались к прибору? Моментально добежали до него и вернулись обратно? Закружились по цепи? Да, закружились, но не так скоро, как нам могло показаться.
Оказывается, при включении цепи заряды, переносящие ток, пришли в движение все одновременно. Собственная скорость, с которой они текут, удивительно мала — какие-то доли миллиметра в секунду. Почему же тогда прибор почти мгновенно отреагировал на наше нажатие кнопки и сразу заработал?
А дело в том, что не сами заряды побежали по цепи так быстро, они только передали друг другу сигнал — «пора двигаться!» Вот этот-то сигнал и несется с огромной — триста тысяч километров в секунду — скоростью. Что же это за скорость такая? Ее называют скоростью распространения электрического поля и равна она скорости света.
Идея о том, что вокруг электрических зарядов меняются свойства пространства, иными словами, создается электрическое поле, возникло в работах великого английского ученого Майкла Фарадея. В дальнейшем она блестяще подтвердилась и легла в фундамент теории электромагнетизма.
Вот и в нашем примере зарядам не было нужды мчаться «во весь дух» по цепи. Им было достаточно «шевельнуться» при ее замыкании, а информацию об этом электрическое поле донесло до всех «закоулков» цепи, заставив везде течь ток.

Мир магнетизма
…Сесть на железный круг
И, взяв большой магнит,
Его забросить вверх высоко,
Докуда будет видеть око;
Он за собой железо приманит…
Знаете, что описано в этом стихе? Так знаменитый герой Эдмона Ростана, поэт и фантазер Сирано де Бержерак предлагал полететь… на Луну. Подумайте, кстати, возможно ли подниматься подобным манером.
Нам же сейчас важен лишь один из участников этого «полета» — магнит. Знали о нем, как видно, исстари. И компасы придумали, и для всяких развлечений и устройств приспосабливали. Да и вы, конечно, баловались с магнитами, заставляя ими «плясать» гвоздики и стальные скрепки.
Но вот когда человек научился управлять «магнитной силой» и даже создавать магниты искусственные, он сумел воплотить в жизнь свои давние и заветные мечты.

Можно ли говорить друг с другом на огромном расстоянии? Бывает ли связь без проводов? Как посмотреть футбол в Америке, сидя на диване в Москве?
Все это оказалось осуществимо. Телеграф, телефон, радио, телевидение, даже трансляции с других планет — разве нам это в диковинку? А начиналось путешествие в огромный и волшебный мир магнетизма с наблюдений за маленькой дрожащей стрелкой компаса.
Зачем нужен компас?
Самые простые опыты по магнетизму — опыты с компасом. Ну-ка, рассмотрите его повнимательнее. Стрелка компаса окрашена двумя цветами: один конец синий или голубой, а другой — красный. Сделана она из кусочка железа и укреплена так, что может свободно вращаться на кончике иглы. Синий ее конец указывает на север, красный — на юг. С помощью этой стрелки мы можем ориентироваться в сторонах света.
Таким свойством — поворачиваться в пространстве — обладают многие намагниченные предметы. Подвешенный на нитке железный гвоздь, если он был намагничен, также становится «компасом», то есть поворачивается по направлению «север-юг».
Трудно сказать, когда люди обнаружили такое явление и стали его применять. Во всяком случае, еще более 4000 лет назад это открытие было известно китайцам. Через арабских купцов с принципом действия компаса познакомилась и Европа, и в течение XII века он широко распространился по ней.
Со временем компас стали ставить на корабли, брать с собой в путешествия, использовать при составлении географических карт. В сочетании с ориентированием по звездам компас превратился в незаменимое навигационное средство.

Для точных показаний компаса надо следить за тем, чтобы его стрелка не размагничивалась, то есть не помещать его вблизи железных предметов. Так же надо дать стрелке возможность вращаться без трения. Этого вы, кстати, можете добиться тем, что поместите намагниченную стрелку на деревянную планку или кусочек пенопласта, плавающие в воде. Последите, как всякий раз «потревоженный» компас будет возвращаться в одно и то же положение.
Как бродят полюса?
В любой ли точке на поверхности Земли компас дает верные показания? Оказывается, нет. И дело не в самом приборе, а в том, где его используют.
Читать дальшеИнтервал:
Закладка: