Эмилия Александрова - Стол находок утерянных чисел

Тут можно читать онлайн Эмилия Александрова - Стол находок утерянных чисел - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Детская Литература, год 1988. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эмилия Александрова - Стол находок утерянных чисел краткое содержание

Стол находок утерянных чисел - описание и краткое содержание, автор Эмилия Александрова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.

Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку. Это еще одна из книг этих авторов.

Стол находок утерянных чисел - читать онлайн бесплатно полную версию (весь текст целиком)

Стол находок утерянных чисел - читать книгу онлайн бесплатно, автор Эмилия Александрова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Не в пример Пусе, девочка уже могла объяснить ход своих рассуждений и сделала это очень толково. Она решила начать с первой, наименьшей цифры числа. Почему наименьшей? Да потому что по условию каждая последующая была вдвое больше предыдущей. Что же это могла быть за цифра? Ведь чётных цифр, как известно, четыре: 2, 4, 6, 8. Начав с первой из них — двойки, получим число 248. Теперь посмотрим, можно ли получить таким образом другое число, удовлетворяющее нашим условиям? Начнём его с цифры четыре и увидим, что построить таким образом нужное число невозможно, поскольку третья его цифра — это уже не цифра, а двузначное число 16 (4, 8, 16). И стало быть, искомое число — 248.

Несмотря на солидный возраст, Главному терятелю досталось задание примерно той же сложности. Проницательные призраки сразу поняли, с кем имеют дело, и рисковать не захотели. В конце концов, всякая неудачная попытка оборачивалась прежде всего против них самих… Избранное ими число было опять-таки трёхзначным. Каждая его последующая цифра на единицу меньше предыдущей, а последняя — в два раза меньше первой.

Признаться, волновался я отчаянно, но вопреки моим опасениям Главный терятель ничего не забыл и не перепутал. Наоборот, он даже проявил похвальную самостоятельность, подойдя к решению совсем иначе, нежели девочка. Он размышлял так: раз первая цифра числа, с одной стороны, в два раза больше последней, а с другой стороны — на два больше её, это может быть только 4. При этом последующая цифра будет 3, а последняя — два. Таким образом, искомое — 432.

Мне это решение крайне понравилось. Главный терятель расколдовал число самым простым, самым экономным, а стало быть, и самым красивым способом.

Я охотно увенчал бы его лаврами, но это сделали за меня призраки. Во время традиционного гимна на всклокоченную голову героя опустился венок из берёзовых листьев, и мы от души поздравили его с победой — вся наша троица, не исключая Пуси, который подпрыгнул и нежно лизнул Главного терятеля в нос.

Последним номером программы шёл я. Видимо, у призраков я считался за козырного туза, и они припасли для меня четырёхзначное число с такими приметами: крайние цифры его одинаковы и меньше средних, которые тоже одинаковы. Сумма всех цифр числа равна восьми.

Я начал с самого последнего признака, Сумма всех цифр числа — 8. И так как крайние и средние цифры числа одинаковы, значит, сумма первой и второй равна половине от восьми, то есть четырём. А так как первая цифра меньше второй и, сверх того, они разные, значит, первая цифра — 1, а вторая, естественно, 3. Стало быть, всё число 1331.

…Прощание было трогательным. До самого конца берёзовой аллеи нас сопровождала чудесная музыка. Голоса незримого хора взлетали как птицы. Бедные пленники ликовали за тех, кто от плена избавился. И, ещё раз оценив их благородство, мы пообещали им вернуться и расколдовать всех. Правда, не прежде, чем завершим операцию «Пуся» и благополучно вернём Главному терятелю его утраченное сокровище.

КОЕ-ЧТО О ПРИЗНАКАХ ДЕЛИМОСТИ

По дороге в лабораторию Пуся задержался у цирковой рекламы. Там была нарисована девочка, обучающая грамоте собачку.

Собачка составляла слова из детских кубиков с азбукой и успела уже сложить имя своей дрессировщицы.

На Пусю это произвело неизгладимое впечатление.

Реклама давно скрылась из виду, а он всё ещё оглядывался и был до того рассеян, что, против обыкновения, не прислушивался к нашей беседе. А жаль! Ведь мы говорили о признаках делимости целых чисел, и ему они тоже могут пригодиться. Как-никак Пуся — считающая собака!

Между прочим, двузначное число, которое он расколдовал в берёзовой роще, тоже связано с одним из признаков делимости. Если помните, по условию оно нечётное и делится на 5. А на 5 всегда делятся числа, оканчивающиеся пятёркой или нулём. Правда, нулём оканчиваются числа чётные… Стало быть, Пусино число 75 тоже делится на 5. Но это не всё. Цифры этого числа 7 и 5 в сумме составляют 12. Легко понять, что 12 делится на три. А всякое число, сумма цифр которого кратна трём, тоже непременно делится на 3. К примеру, возьмём число 2607. Сумма его цифр 15 (2 + 6 + 0 + 7 = 15). 15 на 3 делится. Значит, и всё число тоже…

Вы, надеюсь, понимаете, что разговор о признаках делимости я затеял больше для девочки. Но и Главный терятель не остался к нему равнодушным. Он вмешался в беседу при первой же возможности и заявил, что очень любит признак делимости на 7. По его мнению, он очень прост. Допустим, надо узнать, делится ли на 7 число 154. Для этого умножаем последнюю цифру 4 на 2. Получим 8. Вычтем из восьми предыдущую цифру 5. Получим 3. Снова умножим 3 на два. Получим 6. Теперь прибавим к шести уже первую цифру — 1. Получим 7. Разумеется, 7 на 7 делится. Значит, на 7 делится и число 154.

— И это вы называете простым признаком? — усмехнулась девочка. — По мне куда проще прямо разделить 154 на 7.

— Конечно, проще, — поддакнул Главный терятель. — Но только в том случае, когда мы имеем дело с небольшим числом. А если с большим? С девятизначным? Или того больше? Вообще, — перебил он себя, — семь — интереснейшее число. Во-первых, оно простое. Ни на кого, кроме себя и единицы, не делится…

— Во-вторых? — прищурилась девочка.

— Во-вторых, его без конца поминают в пословицах и поговорках. На семь бед — один ответ. Семь раз отмерь — раз отрежь. Ммм… Ну и другие…

— Семь пятниц на одной неделе, — затараторила девочка, — семеро с ложкой — один с плошкой, семеро одного не ждут, семь пядей во лбу, на седьмом небе, семь вёрст до небес, за семь вёрст киселя хлебать, семимильными шагами, за семью горами, за семью замками, за семью печатями…

Тише тише остановил я её смеясь Дай и мне слово вставить Семёрок ещё - фото 16 Тише тише остановил я её смеясь Дай и мне слово вставить Семёрок ещё - фото 17

— Тише, тише, — остановил я её, смеясь. — Дай и мне слово вставить. Семёрок ещё в заглавиях много. Белоснежка и семь гномов. Великолепная семёрка. Цветик-семицветик. Волк и семеро козлят… И ещё вот что: семь, хоть и не совершенное число, а стоит всё-таки сразу после совершенного — после шестёрки. А второе совершенное число 28 делится на 7.

— Скажите, пожалуйста, а я и не заметил! — умилился Главный терятель. — Хорошо бы и тут покопаться в истории. Может быть, она подскажет, с чего это люди так неравнодушны к семёрке?

— Только не сейчас, — запротестовала девочка. — Сейчас мне хочется узнать, с какими признаками делимости связано число 248. То самое, что я расколдовала. Прежде всего, оно чётное. Значит, делится на 2…

— Верно, — подтвердил я. — И ещё: две последние цифры образуют число 48. Сразу видно, что 48 делится на 4. И это первый признак, что и всё число тоже делится на 4.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эмилия Александрова читать все книги автора по порядку

Эмилия Александрова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стол находок утерянных чисел отзывы


Отзывы читателей о книге Стол находок утерянных чисел, автор: Эмилия Александрова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x