Юрий Фиалков - Свет невидимого
- Название:Свет невидимого
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Фиалков - Свет невидимого краткое содержание
Книга эта о радиоактивности. Той самой радиоактивности, которая была открыта на рубеже XIX и XX веков и которая во многом определила развитие не только физики, но и всех иных разделов естествознания.
Без малого два десятилетия назад автор уже написал книгу о том, как явление радиоактивности послужило химии и геологии, медицине и археологии, биологии и космогонии («Ядро — выстрел!», издательство «Детская литература», 1966 г.). Но события в науке в наше время развиваются стремительно. Вот почему автору свою прежнюю книгу пришлось существенно переработать и дать ей другое название.
Свет невидимого - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вот почему к нити подходит уже солидная компания отрицательных ионов — несколько миллионов, а то и больше. При столкновении отрицательных ионов с положительно заряженной нитью происходит разряд, и поскольку количество ионов, повторяю, весьма велико, то этот разряд может быть зафиксирован специальным и, кстати, не очень сложным устройством. Вот и все.
Как видим, счетчик Гейгера — Мюллера устроен просто, но очень хитро: один-единственный ион он превращает в несколько миллионов. И поэтому такой своеобразный микроскоп позволяет регистрировать распад одного отдельного атома.
Физика и химия не знают другого прибора, который был бы столь же простым и позволял в то же время определять такой ничтожный эффект, как распад отдельного атома.
Итак, с помощью радиоактивности можно определить то наименьшее количество вещества, меньше которого оно, собственно говоря, уже перестает быть веществом. Последняя фраза походит на каламбур. Но если вы расщепите атом, то это будет уже не тот элемент, который вас интересовал, а совсем другой. Поэтому химическим пределом вещества является именно атом. А что получается дальше — это уже забота физики.
Был бы атом элемента радиоактивен, а обнаружить его благодаря такому отличию несложно. Но вот ведь беда — далеко не все элементы радиоактивны, во всяком случае в такой степени, чтобы можно было достаточно быстро уловить акт распада атома элемента. Поэтому с помощью измерения радиоактивности можно определить ничтожные в весовом выражении количества лишь элементов с ярко выраженными радиоактивными свойствами — радия, полония, радона, тория, урана. Но ведь это лишь малая доля всех известных нам естественных химических элементов. Как же быть с остальными?
Формула «не ждать милостей от природы» в настоящее время, когда беспокойство за природу (называемой в таких случаях по-канцелярски официально «окружающей средой») стало осознанным, звучит не столь завораживающе, не столь бесспорно, как, скажем, лет 40–50 назад. И тем не менее рискну заметить, что по отношению к той проблеме, о которой сейчас пойдет речь, эти «не ждать милостей…» звучат актуально, очень уместно.
Если мы захотим обозреть средства, которыми пользовались ученые для расщепления атомных ядер на заре развития атомной физики, то можно будет только дивиться скудости и малоэффективности этого арсенала. Альфа-частица (ядро атома гелия) и протон (ядро атома водорода). Вот и все.
Быть может, в моих словах не содержится достаточной почтительности к испытанным и верным солдатам — ветеранам ядерной физики: альфа-частице и протону. Но полагаю, они меня извинят. Извинят, потому что сами признают свою малую эффективность для получения сколь-нибудь больших количеств искусственных элементов.
В самом деле, представим себе, как происходит обстрел атомных ядер этими снарядами. Вот летит нацеленная в ядро положительно заряженная альфа-частица. Первое препятствие на ее пути — электронная оболочка атома: каждый из вращающихся вокруг ядра электронов, притягиваясь (закон Кулона!) к ядерному снаряду — альфа-частице, — урывает свою долю ее энергии движения.
Прорвавшись через ограду, воздвигнутую электронами, альфа-частица продолжает путь к ядру уже значительно менее резво, чем прежде. Однако главные испытания альфа-частицы еще предстоят — ведь мишень, в которую она направлена, атомное ядро, заряжена так же, как и снаряд — положительно. И поэтому мишень всеми силами отталкивает летящий в нее снаряд. Отталкивание может быть настолько сильным, что снаряд подходит к цели, совсем потеряв скорость. Понятно, что ядерная реакция при этом произойти не может.
Но случается подчас и совсем неожиданное: подойдя к ядру, альфа-частица разворачивается и летит в обратном направлении (энергия отталкивания значительно превысила энергию, с которой альфа-частица подлетала к ядру). Не сомневаюсь, что такие снаряды смутили бы самого отважного из артиллеристов.
Однако физикам не приходится ни смущаться, ни унывать: они сконструировали ускорители, в которых ядерные снаряды разгонялись до таких скоростей, что без труда преодолевали все кулоновские преграды — и электроны, и ядра.
В начале 30-х годов был открыт превосходный снаряд для целей ядерной бомбардировки — нейтрон. Не обладая никаким зарядом, он с полным равнодушием проходит через рой суетящихся вокруг ядра электронов, невозмутимо приближается к ядру и так же спокойно внедряется в него, увеличивая его атомную массу на единицу. При этом энергия ядра, естественно, увеличивается, и это становится причиной его последующей радиоактивности.
Радиоактивности — в этом все дело. Потому что при ядерных реакциях, в частности реакциях с участием нейтронов, образуются искусственные радиоактивные изотопы химических элементов.
Впрочем, сдается, я несколько идеализировал свойства нейтрона как ядерного снаряда. Чтобы осуществилась ядерная реакция, нейтрон все же должен двигаться с хорошей скоростью, иначе при столкновении с ядром он не внедрится в него, а отскочит, подобно теннисному мячику. Поэтому нередко нейтронам необходимо для целей ядерной бомбардировки сообщать энергию, и притом довольно значительную. Значит, и нейтроны следует разгонять в ускорит… Стоп, нейтроны ведь в ускорителях не разгонишь! Оно и понятно: нейтроны не заряжены и поэтому не реагируют на внешнее электрическое поле.
Вот почему физики должны были изыскивать какие-то способы ускорения нейтронов. Один из них был найден достаточно быстро. Я бы назвал этот способ биллиардным. Не претендую на то, чтобы это определение вошло в учебники, но суть дела оно все-таки передает.
Берут сплав какого-либо естественного радиоактивного элемента, испускающего альфа-частицы (например, радия или полония), с бериллием — элементом, ядра атомов которого богаты нейтронами. Альфа-частицы, ударяясь о ядра бериллия (а вылетают альфа-частицы из ядер атомов радия либо полония со скоростью около 15 тысяч километров в секунду — об этом уже упоминалось в одной из предыдущих глав), выбивают из них нейтроны, которые при этом также приобретают солидную скорость.
Но много нейтронов, или прибегая к терминологии физиков, солидный поток нейтронов таким способом не получить. Радий — один из редчайших элементов, полоний — и вовсе экзотика. Для лабораторных экспериментов подобные источники нейтронов еще годятся, но для промышленного получения искусственных радиоактивных изотопов конечно же нет.
Теперь понятно, почему химики сочли такими благодатными возможности, которые представили им ядерные реакторы. При делении урана в реакторах высвобождается громадное количество нейтронов. Даже в сравнительно небольших по размеру атомных реакторах через квадратный сантиметр его сечения проходят за секунду десятки, а то и сотни миллиардов нейтронов.
Читать дальшеИнтервал:
Закладка: