Ю. Колесник - Современное состояние биосферы и экологическая политика
- Название:Современное состояние биосферы и экологическая политика
- Автор:
- Жанр:
- Издательство:Издательство «Питер»046ebc0b-b024-102a-94d5-07de47c81719
- Год:2007
- Город:Питер
- ISBN:978-5-91180-457-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ю. Колесник - Современное состояние биосферы и экологическая политика краткое содержание
В книге представлены разнообразные материалы, отражающие характер взаимосвязи между современным состоянием биосферы и экономической политикой. На основании обобщения данных, имеющихся в зарубежной и отечественной литературе, а также используя материалы собственных исследований, авторы показывают реальное положение дел в этой области. Это позволяет им присоединиться к предупреждениям специалистов о том, что возможности биотической регуляции окружающей нас среды близки к исчерпанию.
Книга предназначена для тех, кто серьезно обеспокоен проблемами в области экологии и экологической политики. Материалы книги могут быть использованы в качестве пособия для студентов биологических факультетов вузов, преподавателей биологии, экологии, а также для исследовательских проектов аспирантов и ученых, занимающихся биосферными явлениями.
Современное состояние биосферы и экологическая политика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
За лето популяция из 100 червей на одном квадратном метре прокладывает в почве до километра подземных ходов диаметром 3–7 мм. Это улучшает аэрацию почвы и благоприятно сказывается на росте растений. В сообществах умеренной зоны они занимают ведущие позиции.
Практически все виды червей – дождевые, норные (Lumbricus terrestrus), пашенный (Aporrectodea calliginosa), красный калифорнийский, подвид навозного (Eisenia fetida и др.), представляют собой небольшие «химические лаборатории», обогащающие почву азотом, фосфором калием и другими макро– и микроэлементами. Кроме главной их деятельности – создания плодородия почвы, они широко используются в птицеводстве, являясь прекрасным кормом для кур (Тимофеева, Колесник, 2004, с. 132–141).
Биогенная миграция атомов II рода – механическая – отчетливо проявляется в наземных экосистемах с хорошо развитым почвенным покровом, позволяющим животным создавать глубокие укрытия (гнездовые камеры термитов, например, расположены на глубине 2–4 м от поверхности). Благодаря выбросам землероев, в верхние слои почвы попадают первичные не выветрившиеся минералы, которые, разлагаясь, вовлекаются в биологический круговорот. Недаром известный геолог Г. Ф. Мирчинк (1889–1942) называл сурка-тарбагана «лучшим геологом Забайкалья» – его норы окружены «коллекциями» горных пород, добытых с глубины нескольких метров! Обыкновенные кроты перерывают от 3,9 до 35 т на гектар почвы. Если выразить биогеохимическую работу почвенных животных в килограммах на гектар, то в дерново-подзолистых почвах кроты перемещают углерода 76 кг/га, азота – 4,8, кремния – 2942, железа – 338, алюминия – 481 кг/га. Это намного больше, чем в ежегодном растительном опаде (Тюрюканов, 1990, с. 110–112).
Понятие «нора» и «гнездо» обычно ассоциируются у нас с грызунами и птицами. Между тем биогенная миграция атомов II рода распространена не только в наземных, но и в морских экосистемах, и здесь ее роль может быть еще более значительна. И на дне моря организмы строят себе укрытия, причем не только в мягком, но и в скальном грунте. Олигохеты и полихеты углубляются в грунт на 40 см и более. Двустворчатые моллюски зарываются обычно неглубоко, но некоторые из них – солениды и миа – роют норы, которым позавидует и сурок: они достигают глубины нескольких метров. В зоне прибоя и на перемываемом волнами песке – вот беда! – норы не выроешь и гнездо не совьешь. Приходится сверлить скальные породы. И они сверлят. Этим занимаются водоросли и губки, бактерии и моллюски, полихеты, морские ежи, рачки.
Сверлильщики появились в далеком геологическом прошлом. Источенные ими породы находят даже в докембрийских отложениях; и поныне они продолжают свою разрушительную работу. Сверлящая деятельность моллюсков фолад вызывает иногда катастрофические последствия (Елисеев, 2002, с. 258).
К биогенной миграции II рода можно отнести и перемещение самого живого вещества. Сюда относятся сезонные перелеты птиц, перемещения животных в поисках корма, массовые миграции животных. Естественно, что все эти разнообразные формы движения живого вызывают и транспортировку небиогенного вещества.
Как мы видели ранее, В. И. Вернадский подразделял процессы, осуществляемые в биосфере живым веществом, по характеру самих процессов.
Несколько иначе подошел к этому вопросу его современник – Н. А. Андрусов.
«Химическая деятельность организма вообще, имеющая геологическое значение, – писал Андрусов, – может быть сведена к двум категориям: во-первых, к образованию на наружной поверхности или внутри твердых выделений, способных сохраняться;во-вторых, к образованию жидких и газообразных выделений, способных вступать в различные химические реакции с окружающим неорганическим миром» (цит. по: Елисеев, 2002, с. 259).
Для понимания той работы, которую совершает живое вещество в биосфере, очень важными являются три основных положения, которые Владимир Иванович называл «биогеохимическими принципами». Обсудим этот вопрос подробнее в следующем разделе.
8.2. Биогеохимические принципы
В формулировке В. И. Вернадского биогеохимические принципы звучат следующим образом.
I принцип: «Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению».
II принцип: «Эволюция видов в ходе геологического времени, приводящая к созданию форм жизни устойчивых в биосфере, идет в направлении, увеличивающем биогенную миграцию атомов биосферы» (или в другой формулировке: «При эволюции видов выживают те организмы, которые своею жизнью увеличивают биогенную геохимическую энергию»).
III биогеохимический принцип: «В течение всего геологического времени, с криптозоя, заселение планеты должно было быть максимально возможным для всего живого вещества, которое тогда существовало» (1940, с. 185;1965, с. 283–286).
Для Вернадского первый биогеохимический принцип был тесно связан со способностью живого вещества неограниченно размножаться в оптимальных условиях. «Вихрь атомов», который представляет собой жизнь, по определению Жоржа Кювье, стремится к безграничной экспансии. Следствием этого и является максимальное проявление биогенной миграции атомов в биосфере.
Второй биогеохимический принцип, по существу, затрагивает кардинальную проблему современной биологической теории – вопрос о направленности эволюции организмов. По мысли В. И. Вернадского, преимущества в ходе эволюции получают те организмы, которые приобрели способность усваивать новые формы энергии или «научились» полнее использовать химическую энергию, запасенную в других организмах. В ходе биологической эволюции, таким образом, увеличивается «КПД» биосферы в целом. Второй принцип справедлив и в отношении деструктивной ветви. Например, если для биогенного разложения мхов и лишайников необходимы десятилетия, то для трав – месяцы (Зимов, Чупрынин, 1991, с. 63–64). Объяснение этого факта заключается в том, что прогрессивные растения больше содержат легко усваиваемых сахаров, азотистых соединений и меньше лигнина, целлюлозы и являются более совершенными консументами, деструкторами. Если мхи разлагаются простейшими, то в минерализации «высокооборотистых растений» принимают активное участие почвенная зоомасса и позвоночные (Зимов, Чупрынин, 1991, с. 63).
В. И. Вернадский первым стал исследовать жизнь как целое, как геологически своеобразное живое вещество, характеризующееся весом, химическим составом, энергией и геохимической активностью. Он подчеркивал, что за геологическую историю организмы, по-видимому, осваивали новые области планеты, приспосабливаясь к многообразным природным условиям и участвуя в их изменении. Одно из выражений геологической активности живого вещества – скорость размножения организмов. Она колеблется в широких пределах и в идеальных условиях(отсутствующих в природе) достигает скорости звука. Бактерия холеры, например, способна (теоретически) за тридцать часов покрыть сплошной пленкой всю поверхность планеты. Крохотная инфузория туфелька может за пять лет выработать массу протоплазмы, по объему в десять тысяч раз превышающую нашу планету. Одноклеточная водоросль диатомея за восемь дней способна образовать массу материи, равную объему Земли, а в течение следующего дня удвоить эту массу.
Читать дальшеИнтервал:
Закладка: