Т. Карпова - Концепции современного естествознания

Тут можно читать онлайн Т. Карпова - Концепции современного естествознания - бесплатно ознакомительный отрывок. Жанр: child_education, издательство Array Литагент «АСТ», год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Концепции современного естествознания
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «АСТ»
  • Год:
    2012
  • Город:
    Москва, Санкт-Петербург
  • ISBN:
    978-5-17-069999-5
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Т. Карпова - Концепции современного естествознания краткое содержание

Концепции современного естествознания - описание и краткое содержание, автор Т. Карпова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге изложены ответы на основные вопросы темы «Концепции современного естествознания». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета.
Пособие адресовано студентам высших и средних образовательных учреждений, а также всем интересующимся данной тематикой.

Концепции современного естествознания - читать онлайн бесплатно ознакомительный отрывок

Концепции современного естествознания - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Т. Карпова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теплота и температура как понятия до середины XIX в. были в естествознании синонимами. Этому способствовало существование дополнительного компонента – теплорода . Под теплородом понималась особая составляющая всех материальных тел, способная изнутри нагревать эти тела. Смертельный удар по теплороду нанес ученый Румфорд .

Он решил провести опыты с трением. Теория теплорода объясняла, что при трении из объектов выжимается жидкий теплород, из-за чего изменяется их теплоемкость. Румфорд провел эксперимент по сверлению пушечного ствола и четко зафиксировал результаты: время сверления 150 минут, за счет трения совершена работа, достаточная для испарения 12 кг воды, в то же время получено 270 г металлической стружки, имеющей ту же теплоемкость, что и отливка.

Поскольку источник теплоты, происходящей от трения, был неисчерпаем, а изолированное тело или система тел не может поставлять теплород без ограничения, то полученная теплота теплородом объясняться не может. Так было доказано, что теплорода не существует.

В 1827 г. Карно провел теоретический анализ процесса превращения теплоты в работу, а Майер установил механический эквивалент теплоты. Опытным путем он пришел к выводу, что теплоемкости газа при постоянном давлении (С р) и при постоянном объеме (С v) неодинаковы (С р> С v). Рассматривая теплоту как «силу», то есть энергию, Майер объяснил неодинаковость теплоемкости.

При вычислении теплоты по формуле dС = С р– С v, он сопоставил теплоту с работой А и получил механический эквивалент теплоты. Его исследования дополнил Джоуль, получивший точный результат механического эквивалента теплоты. В результате работ Майера, Джоуля и Гельмгольца был открыт закон сохранения энергии.

Появление термодинамики как раздела физики прежде всего связано с работами Майера, Джоуля, Гельмгольца, Клаузиуса, Кельвина, Карно. Рождению термодинамики способствовали исследования Карно, ориентированные на практическое применение тепловых машин, а свое название термодинамика получила благодаря Кельвину. Значимыми в термодинамике являются обе части слова: термо , то есть теплота, не входившая как понятие в классическую физику, и динамика , движение, работа – сразу вносившая ясность, что процессы в этом разделе физики не будут рассматриваться как статичные.

Термодинамика изучает особенности превращения тепловой формы движения в другие, не учитывая микроскопического движения частиц, составляющих вещество. В термодинамике существует более мелкое деление структуры – на: а) термодинамику равновесных систем или систем, переходящих к равновесию (классическая, или равновесная термодинамика); б) термодинамику неравновесных систем (неравновесная термодинамика). Классическая термодинамика сформировалась к середине XIX в., а неравновесная термодинамика – ко второй половине XX в.

Параллельно с термодинамикой получила развитие молекулярно-кинетическая теория, изучающая макроскопические проявления систем как результаты суммарного действия совокупности хаотически движущихся молекул. В отличие от термодинамики, для которой очень важны точные и конкретные показатели, поскольку от этого зависит работоспособность системы, в молекулярно-кинетической теории принято пользоваться статистическим методом , который сводит все показатели к среднестатистическим величинам.

При изучении действия молекул молекулярно-кинетическая теория не учитывает особенностей движения той или иной молекулы, важна лишь средняя величина, позволяющая выявить характеристики движения массы частиц. По методу исследования молекулярно-кинетическая теория получила название статистической физики . Иными словами, механическая физика в XIX в. распалась на два направления: термодинамика и молекулярно-кинетическая теория. Законы, которыми оперировала классическая физика, были пересмотрены и уточнены.

Впервые идею о том, что всякое тело имеет внутреннюю энергию (U), высказал ученый Клаузиус, и именно эта его мысль легла в основу первого закона (начала) термодинамики. Сам Клаузиус называл эту энергию теплом, содержащимся в теле, в отличие от тепла, сообщенного телу (Q). Экспериментальным путем было установлено, что эту внутреннюю энергию можно увеличить двумя способами: либо совершив над телом механическую работу (А), либо нагрев или охладив само тело, то есть передав ему количество теплоты (Q). Следовательно, формула внутренней энергии определяется следующим равенством: dU = Q – A.

Разбирая динамику газов, Кельвин вывел определение, что количество теплоты, сообщенное газу, идет на увеличение внутренней энергии газа и совершение газом внешней работы, то есть Q = dU + A, а для бесконечно малых изменений dQ = dU + dA. В физике первое начало термодинамики получило название закона сохранения энергии . Согласно этому закону была навсегда похоронена популярная в XIX в. идея создания вечного двигателя, поскольку без источника питания совершение работы невозможно.

В своих исследованиях Майер выявил 25 случаев превращения работы в тепло: механическая работа, электричество, химическая «сила» вещества, теплота, электричество и т. д. Распространив закон сохранения энергии и на биологические системы, к превращению энергии в живых организмах он отнес поглощение пищи, химические процессы в организме, тепловые и механические эффекты. Закон сохранения энергии был применен Гессом для объяснения химических реакций, а в результате деятельности Фарадея, Ленца и Джоуля был сформулирован так называемый закон Джоуля—Ленца о связи электрической и тепловой энергии, выражающийся формулой: Q = I 2· R · t.

Благодаря постоянной полувековой работе по изучению термодинамики был определен ее ведущий принцип , который коротко можно сформулировать следующим образом: энергия не появляется ниоткуда и не исчезает бесследно, ее количество в природе постоянно и может только перераспределяться и превращаться из одного вида в другой.

Первичная формулировка второго начала термодинамики принадлежит Фурье и выглядит следующим образом: количество теплоты, которое переносится в единицу времени через единицу площади поверхности вдоль какого-либо направления, прямо пропорционально величине изменения температуры вдоль этого направления.

Явление переноса теплоты получило название теплопроводности . Характерной особенностью теплопроводности является равномерное распределение тепла по всему объекту, передача тепла из нагретых областей до тех пор, пока система не придет в равновесие. Процесс передачи тепла зависит от времени и необратим (то есть идет в одну сторону и не может быть повернут вспять). Необратимость теплопроводности экспериментальным путем установил Карно, описав действие паровой машины.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Т. Карпова читать все книги автора по порядку

Т. Карпова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Концепции современного естествознания отзывы


Отзывы читателей о книге Концепции современного естествознания, автор: Т. Карпова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x