Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
- Название:Аппаратные интерфейсы ПК. Энциклопедия
- Автор:
- Жанр:
- Издательство:Издательский дом «Питер»
- Год:2002
- Город:Санкт-Петербург
- ISBN:5-94723-180-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабочий ток (не более 500 мА) заявляется в конфигурации. Если хаб не может обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано.
Устройство USB должно поддерживать режим приостановки (suspended mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины.
Возможность удаленного пробуждения (remote wakeup) позволяет приостановленному устройству подать сигнал хост-компьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена.
4.1.2. Модель передачи данных
Каждое устройство на шине USB (их может быть до 127) при подключении автоматически получает свой уникальный адрес. Логически устройство представляет собой набор независимых конечных точек (endpoint, ЕР), с которыми хост-контроллер (и клиентское ПО) обменивается информацией. Каждая конечная точка имеет свой номер и описывается следующими параметрами:
♦ требуемая частота доступа к шине и допустимые задержки обслуживания;
♦ требуемая полоса пропускания канала;
♦ требования к обработке ошибок;
♦ максимальные размеры передаваемых и принимаемых пакетов;
♦ тип передачи;
♦ направление передачи (для передач массивов и изохронного обмена).
Каждое устройство обязательно имеет конечную точку с номером 0, используемую для инициализации, общего управления и опроса состояния устройства. Эта точка всегда сконфигурирована при включении питания и подключении устройства к шине. Она поддерживает передачи типа «управление» (см. ниже).
Кроме нулевой точки, устройства-функции могут иметь дополнительные точки, реализующие полезный обмен данными. Низкоскоростные устройства могут иметь до двух дополнительных точек, полноскоростные — до 15 точек ввода и 15 точек вывода (протокольное ограничение). Дополнительные точки (а именно они и предоставляют полезные для пользователя функции) не могут быть использованы до их конфигурирования (установления согласованного с ними канала).
Каналом (pipe) в USB называется модель передачи данных между хост- контроллером и конечной точкой устройства. Имеются два типа каналов: потоки и сообщения. Поток (stream) доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: передача массивов, изохронный и прерывания. Сообщение (message) имеет формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двусторонний обмен сообщениями адресуется к одной и той же конечной точке.
С каналами связаны характеристики, соответствующие конечной точке (полоса пропускания, тип сервиса, размер буфера и т.п.). Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.
4.1.3. Протокол
Все обмены (транзакции) с устройствами USB состоят из двух-трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-маркер (token packet). Он описывает тип и направление передачи, адрес устройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет квитирования (handshake packet)? Последовательность пакетов в транзакциях иллюстрирует рис. 4.4.

Рис. 4.4. Последовательности пакетов: а — вывод, б — ввод
Хост-контроллер организует обмены с устройствами согласно своему плану распределения ресурсов. Контроллер циклически (с периодом 1,0±0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные транзакции (рис. 4.5). Каждый кадр начинается с посылки маркера SOF
(Start Of Frame), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF
(End Of Frame), на время которого хабы запрещают передачу по направлению к контроллеру. В режиме HS пакеты SOF передаются в начале каждого микрокадра (период 125±0,0625 мкс). Хост планирует загрузку кадров так, чтобы в них всегда находилось место для транзакций управления и прерываний. Свободное время кадров может заполняться передачами массивов (bulk transfers). В каждом (микро)кадре может быть выполнено несколько транзакций, их допустимое число зависит от длины поля данных каждой из них.

Рис. 4.5. Поток кадров USB
Для обнаружения ошибок передачи каждый пакет имеет контрольные поля CRC-кодов, позволяющие обнаруживать все одиночные и двойные битовые ошибки. Аппаратные средства обнаруживают ошибки передачи, а контроллер автоматически производит трехкратную попытку передачи. Если повторы безуспешны, сообщение об ошибке передается клиентскому ПО.
Все подробности организации транзакций от клиентского ПО изолируются контроллером USB и его системным программным обеспечением.
4.1.4. Типы передач данных
Архитектура USB допускает четыре базовых типа передачи данных.
♦ Управляющие посылки (control transfers) используются для конфигурирования устройств во время их подключения и для управления устройствами в процессе работы. Протокол обеспечивает гарантированную доставку данных.
♦ Передачи массивов данных (bulk data transfers) — это передачи без каких- либо обязательств по задержке доставки и скорости передачи. Передачи массивов могут занимать всю полосу пропускания шины, свободную от передач других типов. Приоритет этих передач самый низкий, они могут приостанавливаться при большой загрузке шины. Доставка гарантированная — при случайной ошибке выполняется повтор. Передачи массивов уместны для обмена данными с принтерами, сканерами, устройствами хранения и т.п.
Читать дальшеИнтервал:
Закладка: