Oskar Andreasson - Iptables Tutorial 1.2.2

Тут можно читать онлайн Oskar Andreasson - Iptables Tutorial 1.2.2 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Интернет. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Iptables Tutorial 1.2.2
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Oskar Andreasson - Iptables Tutorial 1.2.2 краткое содержание

Iptables Tutorial 1.2.2 - описание и краткое содержание, автор Oskar Andreasson, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Iptables Tutorial 1.2.2 - читать онлайн бесплатно полную версию (весь текст целиком)

Iptables Tutorial 1.2.2 - читать книгу онлайн бесплатно, автор Oskar Andreasson
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As far as the user is concerned, connection tracking works basically the same for all connection types. Have a look at the picture below to see exactly what state the stream enters during the different stages of the connection. As you can see, the connection tracking code does not really follow the flow of the TCP connection, from the users viewpoint. Once it has seen one packet(the SYN), it considers the connection as NEW. Once it sees the return packet(SYN/ACK), it considers the connection as ESTABLISHED. If you think about this a second, you will understand why. With this particular implementation, you can allow NEW and ESTABLISHED packets to leave your local network, only allow ESTABLISHED connections back, and that will work perfectly. Conversely, if the connection tracking machine were to consider the whole connection establishment as NEW, we would never really be able to stop outside connections to our local network, since we would have to allow NEW packets back in again. To make things more complicated, there are a number of other internal states that are used for TCP connections inside the kernel, but which are not available for us in User-land. Roughly, they follow the state standards specified within RFC 793 - Transmission Control Protocol on pages 21-23. We will consider these in more detail further along in this section.

As you can see it is really quite simple seen from the users point of view - фото 33

As you can see, it is really quite simple, seen from the user's point of view. However, looking at the whole construction from the kernel's point of view, it's a little more difficult. Let's look at an example. Consider exactly how the connection states change in the /proc/net/ip_conntrack table. The first state is reported upon receipt of the first SYN packet in a connection.

tcp 6 117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031 \

dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23 \

dport=1031 use=1

As you can see from the above entry, we have a precise state in which a SYN packet has been sent, (the SYN_SENT flag is set), and to which as yet no reply has been sent (witness the [UNREPLIED] flag). The next internal state will be reached when we see another packet in the other direction.

tcp 6 57 SYN_RECV src=192.168.1.5 dst=192.168.1.35 sport=1031 \

dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031 \

use=1

Now we have received a corresponding SYN/ACK in return. As soon as this packet has been received, the state changes once again, this time to SYN_RECV. SYN_RECV tells us that the original SYN was delivered correctly and that the SYN/ACK return packet also got through the firewall properly. Moreover, this connection tracking entry has now seen traffic in both directions and is hence considered as having been replied to. This is not explicit, but rather assumed, as was the [UNREPLIED] flag above. The final step will be reached once we have seen the final ACK in the 3-way handshake.

tcp 6 431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35 \

sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5 \

sport=23 dport=1031 [ASSURED] use=1

In the last example, we have gotten the final ACK in the 3-way handshake and the connection has entered the ESTABLISHED state, as far as the internal mechanisms of iptables are aware. Normally, the stream will be ASSURED by now.

A connection may also enter the ESTABLISHED state, but not be[ASSURED]. This happens if we have connection pickup turned on (Requires the tcp-window-tracking patch, and the ip_conntrack_tcp_loose to be set to 1 or higher). The default, without the tcp-window-tracking patch, is to have this behaviour, and is not changeable.

When a TCP connection is closed down, it is done in the following way and takes the following states.

As you can see the connection is never really closed until the last ACK is - фото 34

As you can see, the connection is never really closed until the last ACK is sent. Do note that this picture only describes how it is closed down under normal circumstances. A connection may also, for example, be closed by sending a RST(reset), if the connection were to be refused. In this case, the connection would be closed down immediately.

When the TCP connection has been closed down, the connection enters the TIME_WAIT state, which is per default set to 2 minutes. This is used so that all packets that have gotten out of order can still get through our rule-set, even after the connection has already closed. This is used as a kind of buffer time so that packets that have gotten stuck in one or another congested router can still get to the firewall, or to the other end of the connection.

If the connection is reset by a RST packet, the state is changed to CLOSE. This means that the connection per default has 10 seconds before the whole connection is definitely closed down. RST packets are not acknowledged in any sense, and will break the connection directly. There are also other states than the ones we have told you about so far. Here is the complete list of possible states that a TCP stream may take, and their timeout values.

Table 7-2. Internal states

State Timeout value
NONE 30 minutes
ESTABLISHED 5 days
SYN_SENT 2 minutes
SYN_RECV 60 seconds
FIN_WAIT 2 minutes
TIME_WAIT 2 minutes
CLOSE 10 seconds
CLOSE_WAIT 12 hours
LAST_ACK 30 seconds
LISTEN 2 minutes

These values are most definitely not absolute. They may change with kernel revisions, and they may also be changed via the proc file-system in the /proc/sys/net/ipv4/netfilter/ip_ct_tcp_* variables. The default values should, however, be fairly well established in practice. These values are set in seconds. Early versions of the patch used jiffies (which was a bug).

NoteAlso note that the User-land side of the state machine does not look at TCP flags (i.e., RST, ACK, and SYN are flags) set in the TCP packets. This is generally bad, since you may want to allow packets in the NEW state to get through the firewall, but when you specify the NEW flag, you will in most cases mean SYN packets.

This is not what happens with the current state implementation; instead, even a packet with no bit set or an ACK flag, will count as NEW. This can be used for redundant firewalling and so on, but it is generally extremely bad on your home network, where you only have a single firewall. To get around this behavior, you could use the command explained in the State NEW packets but no SYN bit set section of the Common problems and questions appendix. Another way is to install the tcp-window-tracking extension from patch-o-matic, and set the /proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_loose to zero, which will make the firewall drop all NEW packets with anything but the SYN flag set.

UDP connections

UDP connections are in themselves not stateful connections, but rather stateless. There are several reasons why, mainly because they don't contain any connection establishment or connection closing; most of all they lack sequencing. Receiving two UDP datagrams in a specific order does not say anything about the order in which they were sent. It is, however, still possible to set states on the connections within the kernel. Let's have a look at how a connection can be tracked and how it might look in conntrack.

As you can see the connection is brought up almost exactly in the same way as - фото 35

As you can see, the connection is brought up almost exactly in the same way as a TCP connection. That is, from the user-land point of view. Internally, conntrack information looks quite a bit different, but intrinsically the details are the same. First of all, let's have a look at the entry after the initial UDP packet has been sent.

udp 17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025 \

[UNREPLIED] src=192.168.1.5 dst=192.168.1.2 sport=1025 \

dport=137 use=1

As you can see from the first and second values, this is an UDP packet. The first is the protocol name, and the second is protocol number. This is just the same as for TCP connections. The third value marks how many seconds this state entry has to live. After this, we get the values of the packet that we have seen and the future expectations of packets over this connection reaching us from the initiating packet sender. These are the source, destination, source port and destination port. At this point, the [UNREPLIED] flag tells us that there's so far been no response to the packet. Finally, we get a brief list of the expectations for returning packets. Do note that the latter entries are in reverse order to the first values. The timeout at this point is set to 30 seconds, as per default.

udp 17 170 src=192.168.1.2 dst=192.168.1.5 sport=137 \

dport=1025 src=192.168.1.5 dst=192.168.1.2 sport=1025 \

dport=137 [ASSURED] use=1

At this point the server has seen a reply to the first packet sent out and the connection is now considered as ESTABLISHED. This is not shown in the connection tracking, as you can see. The main difference is that the [UNREPLIED] flag has now gone. Moreover, the default timeout has changed to 180 seconds - but in this example that's by now been decremented to 170 seconds - in 10 seconds' time, it will be 160 seconds. There's one thing that's missing, though, and can change a bit, and that is the [ASSURED] flag described above. For the [ASSURED] flag to be set on a tracked connection, there must have been a legitimate reply packet to the NEW packet.

udp 17 175 src=192.168.1.5 dst=195.22.79.2 sport=1025 \

dport=53 src=195.22.79.2 dst=192.168.1.5 sport=53 \

dport=1025 [ASSURED] use=1

At this point, the connection has become assured. The connection looks exactly the same as the previous example. If this connection is not used for 180 seconds, it times out. 180 Seconds is a comparatively low value, but should be sufficient for most use. This value is reset to its full value for each packet that matches the same entry and passes through the firewall, just the same as for all of the internal states.

ICMP connections

ICMP packets are far from a stateful stream, since they are only used for controlling and should never establish any connections. There are four ICMP types that will generate return packets however, and these have 2 different states. These ICMP messages can take the NEW and ESTABLISHED states. The ICMP types we are talking about are Echo request and reply, Timestamp request and reply, Information request and reply and finally Address mask request and reply. Out of these, the timestamp request and information request are obsolete and could most probably just be dropped. However, the Echo messages are used in several setups such as pinging hosts. Address mask requests are not used often, but could be useful at times and worth allowing. To get an idea of how this could look, have a look at the following image.

As you can see in the above picture the host sends an echo request to the - фото 36

As you can see in the above picture, the host sends an echo request to the target, which is considered as NEW by the firewall. The target then responds with a echo reply which the firewall considers as state ESTABLISHED. When the first echo request has been seen, the following state entry goes into the ip_conntrack.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Oskar Andreasson читать все книги автора по порядку

Oskar Andreasson - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Iptables Tutorial 1.2.2 отзывы


Отзывы читателей о книге Iptables Tutorial 1.2.2, автор: Oskar Andreasson. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x