Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект
- Название:Совместимость. Как контролировать искусственный интеллект
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9370-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.
Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
351
Происхождение термина GOFAI: John Haugeland , Artificial Intelligence: The Very Idea (MIT Press, 1985).
352
Интервью Демиса Хассабиса о будущем ИИ и глубокого обучения: Nick Heath, «Google DeepMind founder Demis Hassabis: Three truths about AI», TechRepublic , September 24, 2018.
353
В 2011 г. работа Перла была отмечена премией им. Тьюринга.
354
Подробнее о Байесовых сетях: каждому узлу сети присваивается вероятность каждого возможного значения с учетом каждой возможной комбинации ценностей родительских узлов данного (т. е. указывающих на него). Например, вероятность того, что Дубли 12имеет значение истинно , составляет 1,0, если значения D 1и D 2равны, и 0,0 — в другом случае. Возможный мир — это присвоение значений всем узлам. Вероятность такого мира является результатом соответствующих вероятностей каждого из узлов.
355
Собрание применений Байесовых сетей: Olivier Pourret, Patrick Naïm, and Bruce Marcot, eds., Bayesian Networks: A Practical Guide to Applications (Wiley, 2008).
356
Основополагающая статья о вероятностном программировании: Daphne Koller, David McAllester, and Avi Pfeffer, «Effective Bayesian inference for stochastic programs», in Proceedings of the 14th National Conference on Artificial Intelligence (AAAI Press, 1997). Многочисленные дополнительные ссылки см. на сайте probabilistic-programming.org.
357
Использование вероятностных программ для моделирования усвоения концепций людьми: Brenden Lake, Ruslan Salakhutdinov, and Joshua Tenenbaum, «Human-level concept learning through probabilistic program induction», Science 350 (2015): 1332–38.
358
Детальное описание приложения для мониторинга сейсмической активности и соответствующей вероятностной модели: Nimar Arora, Stuart Russell, and Erik Sudderth, «NET-VISA: Network processing vertically integrated seismic analysis», Bulletin of the Seismological Society of America 103 (2013): 709–29.
359
Новостная статья с описанием одной из первых серьезных автокатастроф с участием самоуправляемого автомобиля: Ryan Randazzo, «Who was at fault in self-driving Uber crash? Accounts in Tempe police report disagree», Republic (azcentral.com), March 29, 2017.
360
Фундаментальный анализ индуктивного обучения: David Hume, Philosophical Essays Concerning Human Understanding (A. Millar, 1748).
361
Leslie Valiant, «A theory of the learnable», Communications of the ACM 27 (1984): 1134–42. См. также: Vladimir Vapnik, Statistical Learning Theory (Wiley, 1998). Подход Валианта сосредоточен на вычислительной сложности, Вапника — на статистическом анализе обучающей способности разных классов гипотез, но общим для них является теоретическая основа, связывающая данные и предсказательную точность.
362
Например, чтобы узнать разницу между «ситуационным суперко [одно из правил игры в го. — Прим. пер. ]» и «естественным ситуационным суперко», обучающийся алгоритм должен попытаться повторить позицию на доске, которую прежде создал посредством паса, а не выставления камня. Результаты в разных странах будут разные.
363
Описание состязания ImageNet: Olga Russakovsky et al., «ImageNet large scale visual recognition challenge», International Journal of Computer Vision 115 (2015): 211–52.
364
Первая демонстрация глубоких сетей для визуального восприятия: Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, «ImageNet classification with deep convolutional neural networks», in Advances in Neural Information Processing Systems 25, ed. Fernando Pereira et al. (2012).
365
Трудность различения 100 с лишним пород собак: Andrej Karpathy, «What I learned from competing against a ConvNet on ImageNet», Andrej Karpathy Blog, September 2, 2014.
366
Блог, рассказывающий об исследовании инцепционизма в Google: Alexander Mordvintsev, Christopher Olah, and Mike Tyka, «Inceptionism: Going deeper into neural networks», Google AI Blog , June 17, 2015. Как представляется, идея происходит из работы: J. P. Lewis, «Creation by refinement: A creativity paradigm for gradient descent learning networks», in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1988).
367
Новостная статья о дополнительных соображениях Джеффа Хинтона про глубокие сети: Steve LeVine, «Artificial intelligence pioneer says we need to start over», Axios , September 15, 2017.
368
Каталог недостатков глубокого обучения: Gary Marcus, «Deep learning: A critical appraisal», arXiv:1801.00631 (2018).
369
Популярный учебник по глубокому обучению с честной оценкой его слабостей: François Chollet, Deep Learning with Python (Manning Publications, 2017).
370
Объяснение обучения на основе объяснения: Thomas Dietterich, «Learning at the knowledge level», Machine Learning 1 (1986): 287–315.
371
Иное, на первый взгляд, объяснение обучения на основе объяснения: John Laird, Paul Rosenbloom, and Allen Newell, «Chunking in Soar: The anatomy of a general learning mechanism», Machine Learning 1 (1986): 11–46.
Интервал:
Закладка: