Ирина Козлова - Информатика: конспект лекций
- Название:Информатика: конспект лекций
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Козлова - Информатика: конспект лекций краткое содержание
Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует краткий период, когда студент должен сосредоточиться, систематизировать свои знания. Выражаясь компьютерным языком, он должен «вывести информацию из долговременной памяти в оперативную», сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.
Предлагаемое пособие поможет студентам в решении именно этой задачи применительно к курсу «Информатика».
Содержание и структура пособия соответствуют требованиям Государственного образовательного стандарта высшего профессионального образования.
Издание предназначено студентам высших учебных заведений.
Информатика: конспект лекций - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В первые годы развития компьютерной техники трудности кодирования текстовой информации были вызваны отсутствием необходимых стандартов кодирования. В настоящее время, напротив, существующие трудности связаны с множеством одновременно действующих и зачастую противоречивых стандартов.
Для английского языка, который является неофициальным международным средством общения, эти трудности были решены. Институт стандартизации США выработал и ввел в обращение систему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США).
Для кодировки русского алфавита были разработаны несколько вариантов кодировок:
1) UTF-8 – введена компанией Microsoft; с учетом широкого распространения операционных систем (ОС) и других программных продуктов этой компании в Российской Федерации она нашла широкое распространение;
2) КОИ-8 (Код Обмена Информацией, восьмизначный) – другая популярная кодировка российского алфавита, распространенная в компьютерных сетях на территории Российской Федерации и в российском секторе Интернет;
3) ISO (International Standard Organization – Международный институт стандартизации) – международный стандарт кодирования символов русского языка. На практике эта кодировка используется редко.
Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации. Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов. Система 16-разрядного кодирования символов называется универсальной – UNICODE. Шестнадцать разрядов позволяет обеспечить уникальные коды для 65 536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков.
Несмотря на простоту предложенного подхода, практический переход на данную систему кодировки очень долго не мог осуществиться из-за недостатков ресурсов средств вычислительной техники, так как в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое больше. В конце 1990-х гг. технические средства достигли необходимого уровня, начался постепенный перевод документов и программных средств на систему кодирования UNICODE.
1.5. Кодирование графической информации
Существует несколько способов кодирования графической информации.
При рассмотрении черно-белого графического изображения с помощью увеличительного стекла заметно, что в его состав входит несколько мельчайших точек, образующих характерный узор (или растр). Линейные координаты и индивидуальные свойства каждой из точек изображения можно выразить с помощью целых чисел, поэтому способ растрового кодирования базируется на использовании двоичного кода представления графических данных. Общеизвестным стандартом считается приведение черно-белых иллюстраций в форме комбинации точек с 256 градациями серого цвета, т. е. для кодирования яркости любой точки необходимы 8-разрядные двоичные числа.
В основу кодирования цветных графических изображений положен принцип разложения произвольного цвета на основные составляющие, в качестве которых применяются три основных цвета: красный (Red), зеленый (Green) и синий (Blue). На практике принимается, что любой цвет, который воспринимает человеческий глаз, можно получить с помощью механической комбинации этих трех цветов. Такая система кодирования называется RGB (по первым буквам основных цветов). При применении 24 двоичных разрядов для кодирования цветной графики такой режим носит название полноцветного (True Color).
Каждый из основных цветов сопоставляется с цветом, дополняющим основной цвет до белого. Для любого из основных цветов дополнительным будет являться цвет, который образован суммой пары остальных основных цветов. Соответственно среди дополнительных цветов можно выделить голубой (Cyan), пурпурный (Magenta) и желтый (Yellow). Принцип разложения произвольного цвета на составляющие компоненты используется не только для основных цветов, но и для дополнительных, т. е. любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Этот метод кодирования цвета применяется в полиграфии, но там используется еще и четвертая краска – черная (Black), поэтому эта система кодирования обозначается четырьмя буквами – CMYK. Для представления цветной графики в этой системе применяется 32 двоичных разряда. Данный режим также носит название полноцветного.
Приуменьшении количества двоичных разрядов, применяемых для кодирования цвета каждой точки, сокращается объем данных, но заметно уменьшается диапазон кодируемых цветов. Кодирование цветной графики 16-разрядными двоичными числами носит название режима High Color. При кодировании графической цветной информации с применением 8 бит данных можно передать только 256 оттенков. Данный метод кодирования цвета называется индексным.
1.6. Кодирование звуковой информации
В настоящий момент не существует единой стандартной системы кодирования звуковой информации, так как приемы и методы работы со звуковой информацией начали развиваться по сравнению с методами работы с другими видами информации самыми последними. Поэтому множество различных компаний, которые работают в области кодирования информации, создали свои собственные корпоративные стандарты для звуковой информации. Но среди этих корпоративных стандартов выделяются два основных направления.
В основе метода FM (Frequency Modulation) положено утверждение о том, что теоретически любой сложный звук может быть представлен в виде разложения на последовательность простейших гармонических сигналов разных частот. Каждый из этих гармонических сигналов представляет собой правильную синусоиду и поэтому может быть описан числовыми параметрами или закодирован. Звуковые сигналы образуют непрерывный спектр, т. е. являются аналоговыми, поэтому их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняется с помощью специальных устройств – аналого-цифровых преобразователей (АЦП). Обратное преобразование, которое необходимо для воспроизведения звука, закодированного числовым кодом, производится с помощью цифроаналоговых преобразователей (ЦАП). Из-за таких преобразований звуковых сигналов возникают потери информации, которые связаны с методом кодирования, поэтому качество звукозаписи с помощью метода FM обычно получается недостаточно удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окраской, характерной для электронной музыки. При этом данный метод обеспечивает вполне компактный код, поэтому он широко использовался в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
Читать дальшеИнтервал:
Закладка: