Бертран Мейер - Основы объектно-ориентированного программирования
- Название:Основы объектно-ориентированного программирования
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бертран Мейер - Основы объектно-ориентированного программирования краткое содержание
Фундаментальный учебник по основам объектно-ориентированного программирования и инженерии программ. В книге подробно излагаются основные понятия объектной технологии – классы, объекты, управление памятью, типизация, наследование, универсализация. Большое внимание уделяется проектированию по контракту и обработке исключений, как механизмам, обеспечивающим корректность и устойчивость программных систем.
В книге Бертрана Мейера рассматриваются основы объектно-ориентированного программирования. Изложение начинается с рассмотрения критериев качества программных систем и обоснования того, как объектная технология разработки может обеспечить требуемое качество. Основные понятия объектной технологии и соответствующая нотация появляются как результат тщательного анализа и обсуждений. Подробно рассматривается понятие класса - центральное понятие объектной технологии. Рассматривается абстрактный тип данных, лежащий в основе класса, совмещение классом роли типа данных и модуля и другие аспекты построения класса. Столь же подробно рассматриваются объекты и проблемы управления памятью. Большая часть книги уделена отношениям между классами – наследованию, универсализации и их роли в построении программных систем. Важную часть книги составляет введение понятия контракта, описание технологии проектирования по контракту, как механизма, обеспечивающего корректность создаваемых программ. Не обойдены вниманием и другие важные темы объектного программирования – скрытие информации, статическая типизация, динамическое связывание и обработка исключений. Глубина охвата рассматриваемых тем делает книгу Бертрана Мейера незаменимой для понимания основ объектного программирования.
Основы объектно-ориентированного программирования - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
У15.9 Плоский precursor (предшественник)
Что должна показывать плоская форма класса при встрече с инструкцией, использующей Precursor ?
У15.10 Дублируемое наследование и репликация
Напишите класс WINDOW_WITH_BORDER_AND_MENU без обращения к Precursor . Для доступа к родительскому варианту переопределенного компонента используйте репликацию при дублируемом наследовании. Убедитесь в том, что вы используете правильные предложения selectи назначаете каждому компоненту правильный статус экспорта.
Лекция 16. Техника наследования
Наследование - ключевая составляющая ОО-подхода к повторному использованию и расширяемости. В этой лекции нам предстоит исследовать новые возможности, разнородные, но демонстрирующие замечательные следствия красоты базисных идей.
Наследование и утверждения
Следствия красоты базисных идей:
[x].Связь наследования с утверждениями и Проектированием по Контракту.
[x].Глобальная структура наследования, где все классы согласованы.
[x].Замороженные компоненты, для которых не применим принцип Открыт-Закрыт.
[x].Ограниченная универсальность: как задавать требования на родовые параметры.
[x].Попытка присваивания: как безопасно приводить к типу.
[x].Как и когда изменять свойства типа при повторных объявлениях.
[x].Закрепленные объявления, помогающие избежать лавины переобъявлений.
[x].Непростые отношения между наследованием и скрытием информации.
Вопросам наследования будут посвящены еще две лекции: обзор проблем типизации представлен в лекции 17, а подробное обсуждение методологии наследования - в лекции 6курса "Основы объектно-ориентированного проектирования".
Большинство разделов этой лекции строится по единому принципу: экзаменуются следствия идей предыдущих двух лекций, обнаруживаются проблемы, они подробно анализируются, предлагается обоснованное решение. Ключевым является шаг анализа - как только проблема становится ясной, зачастую решение ее находится сразу же.
Обладая изрядной мощью, наследование может быть и опасным. Не будь механизма утверждений, создатели классов могли бы весьма "вероломно" пользоваться повторными объявлениями и динамическим связыванием для изменения семантики операций без возможности контроля со стороны клиента. Утверждения способны на большее: они дают нам боле глубокое понимание природы наследования. Не будет преувеличением сказать, что лишь понимание принципов Проектирования по Контракту позволяет в полной мере постичь сущность концепции наследования.
Вкратце мы уже очертили основные правила, управляющие взаимосвязью наследования и утверждений: все утверждения (предусловие и постусловия подпрограмм, инварианты классов), заданные в классах-родителях, остаются в силе и для их потомков. В этом разделе мы уточним эти правила и используем полученные результаты, чтобы дать новый взгляд на наследование как на субподряды (subcontracts).
Инварианты
С правилом об инвариантах класса мы встречались и прежде:
Правило родительских инвариантов
Инварианты всех родителей применимы и к самому классу.
Инварианты родителей добавляются к классу. Инварианты соединяются логической операцией and then. (Если у класса нет явного инварианта, то инвариант True играет эту роль.) По индукции в классе действуют инварианты всех его предков, как прямых, так и косвенных.
Как следствие, выписывать инварианты родителей в инварианте потомка еще раз не нужно (хотя семантически такая избыточность не вредит: a and then aесть то же самое, что a ).
Полностью восстановленный инвариант класса можно найти в плоской и краткой плоской форме последнего (см. лекцию 15).
Предусловия и постусловия при наличии динамического связывания
В случае с предусловиями и постусловиями ситуация чуть сложнее. Общая идея, как отмечалось, состоит в том, что любое повторное объявление должно удовлетворять утверждениям оригинальной подпрограммы. Это особенно важно, если подпрограмма отложена: без такого ограничения на будущую реализацию, задание предусловие и постусловий для отложенных подпрограмм было бы бесполезным или, хуже того, привело бы к нежелательному результату. Те же требования к предусловию и постусловию остаются и при переопределении эффективных подпрограмм.
Анализируя механизмы повторного объявления, полиморфизма и динамического связывания, можно дать точную формулировку искомого правила. Но для начала представим типичный случай.
Рассмотрим класс и его подпрограммы, имеющие как предусловие, так и постусловие:
Рис. 16.1. Подпрограмма, клиент и контракт
На рис. 16.1показан клиент C класса A . Чтобы быть клиентом, класс C , как правило, включает в одну из своих подпрограмм объявление и вызов вида:
a1: A
...
a1.r
Для простоты мы проигнорируем все аргументы, которые может требовать r , и положим, что r является процедурой, хотя наши рассуждения в равной мере применимы и к функциям.
Вызов будет корректен лишь тогда, когда он удовлетворяет предусловию. Гарантировать, что C соблюдает свою часть контракта, можно, к примеру, предварив вызов проверкой предусловия, написав вместо a1.r конструкцию:
if a1. then
a1.r
check a1.β end -- постусловие должно выполняться
... Инструкции, которые могут предполагать истинность a1.. ...
end
(Как отмечалось при обсуждении утверждений, не всегда требуется проверка: достаточно, с помощью ifили без него, гарантировать выполнение условия a перед вызовом r . Для простоты будем использовать if-форму, игнорируя предложение else.)
Обеспечив соблюдение предусловия, клиент C рассчитывает на выполнение постусловия a1.β при возврате из r .
Все это является основой Проектирования по Контракту: в момент вызова подпрограммы клиент долженобеспечить соблюдение предусловия, а в ответ при возврате из подпрограммы он полагается на выполнение постусловия.
Что происходит, когда вводится наследование?
Рис. 16.2. Подпрограмма, клиент, контракт и потомок
Читать дальшеИнтервал:
Закладка: