Бертран Мейер - Основы объектно-ориентированного программирования
- Название:Основы объектно-ориентированного программирования
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бертран Мейер - Основы объектно-ориентированного программирования краткое содержание
Фундаментальный учебник по основам объектно-ориентированного программирования и инженерии программ. В книге подробно излагаются основные понятия объектной технологии – классы, объекты, управление памятью, типизация, наследование, универсализация. Большое внимание уделяется проектированию по контракту и обработке исключений, как механизмам, обеспечивающим корректность и устойчивость программных систем.
В книге Бертрана Мейера рассматриваются основы объектно-ориентированного программирования. Изложение начинается с рассмотрения критериев качества программных систем и обоснования того, как объектная технология разработки может обеспечить требуемое качество. Основные понятия объектной технологии и соответствующая нотация появляются как результат тщательного анализа и обсуждений. Подробно рассматривается понятие класса - центральное понятие объектной технологии. Рассматривается абстрактный тип данных, лежащий в основе класса, совмещение классом роли типа данных и модуля и другие аспекты построения класса. Столь же подробно рассматриваются объекты и проблемы управления памятью. Большая часть книги уделена отношениям между классами – наследованию, универсализации и их роли в построении программных систем. Важную часть книги составляет введение понятия контракта, описание технологии проектирования по контракту, как механизма, обеспечивающего корректность создаваемых программ. Не обойдены вниманием и другие важные темы объектного программирования – скрытие информации, статическая типизация, динамическое связывание и обработка исключений. Глубина охвата рассматриваемых тем делает книгу Бертрана Мейера незаменимой для понимания основ объектного программирования.
Основы объектно-ориентированного программирования - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Надежностьобусловлена обнаружением ошибок, которые иначе могли проявить себя лишь во время работы, и только в некоторых случаях. Первое из правил, заставляющее объявлять сущности, как, впрочем, и функции, вносит в программный текст избыточность, что позволяет компилятору, используя два других правила, обнаруживать несоответствия между задуманным и реальным применением сущностей, компонентов и выражений.
Раннее выявление ошибок важно еще и потому, что чем дольше мы будем откладывать их поиск, тем сильнее вырастут издержки на исправление. Это свойство, интуитивно понятное всем программистам-профессионалам, количественно подтверждают широко известные работы Бема (Boehm). Зависимость издержек на исправление от времени отыскания ошибок приведена на графике, построенном по данным ряда больших промышленных проектов и проведенных экспериментов с небольшим управляемым проектом:
Рис. 17.1. Сравнительные издержки на исправление ошибок ([Boehm 1981], публикуется с разрешения)
Читабельностьили Простота понимания(readability) имеет свои преимущества. Во всех примерах этой книги появление типа у сущности дает читателю информацию о ее назначении. Читабельность крайне важна на этапе сопровождения.
Исключив читабельность из круга приоритетов, можно было бы получить другие преимущества, не вводя явных объявлений. В самом деле, возможна неявная форма типизации, когда компилятор, не требуя явного указания типа, пытается автоматически определить его из контекста применения сущности. Эта стратегия известна как выведение типов (type inference). Но в программной инженерии явные объявления типов это помощь, а не наказание, - тип должен быть ясен не только машине, но и читающему текст человеку. |
Наконец, эффективностьможет определять успех или отказ от объектной технологии на практике. В отсутствие статической типизации на выполнение x.f (arg) может уйти сколько угодно времени. Причина этого в том, что на этапе выполнения, не найдя f в базовом классе цели x , поиск будет продолжен у ее потомков, а это верная дорога к неэффективности. Снять остроту проблемы можно, улучшив поиск компонента по иерархии. Авторы языка Self провели большую работу, стремясь генерировать лучший код для языка с динамической типизацией. Но именно статическая типизация позволила такому ОО-продукту приблизиться или сравняться по эффективности с традиционным ПО.
Ключом к статической типизации является уже высказанная идея о том, что компилятор, генерирующий код для конструкции x.f (arg) , знает тип x . Из-за полиморфизма нет возможности однозначно определить подходящую версию компонента f . Но объявление сужает множество возможных типов, позволяя компилятору построить таблицу, обеспечивающую доступ к правильному f с минимальными издержками, - с ограниченной константойсложностью доступа. Дополнительно выполняемые оптимизации статического связывания (static binding)и подстановки (inlining)- также облегчаются благодаря статической типизации, полностью устраняя издержки в тех случаях, когда они применимы.
Аргументы в пользу динамической типизации
Несмотря на все это, динамическая типизация не теряет своих приверженцев, в частности, среди Smalltalk-программистов. Их аргументы основаны прежде всего на реализме, речь о котором шла выше. Они уверены, что статическая типизация чересчур ограничивает их, не давая им свободно выражать свои творческие идеи, называя иногда ее "поясом целомудрия".
С такой аргументацией можно согласиться, но лишь для статически типизированных языков, не поддерживающих ряд возможностей. Стоит отметить, что все концепции, связанные с понятием типа и введенные в предыдущих лекциях, необходимы - отказ от любой из них чреват серьезными ограничениями, а их введение, напротив, придает нашим действиям гибкость, а нам самим дает возможность в полной мере насладиться практичностью статической типизации.
Типизация: слагаемые успеха
Каковы механизмы реалистичной статической типизации? Все они введены в предыдущих лекциях, а потому нам остается лишь кратко о них напомнить. Их совместное перечисление показывает согласованность и мощь их объединения.
Наша система типов полностью основана на понятии класса. Классами являются даже такие базовые типы, как INTEGER , а стало быть, нам не нужны особые правила описания предопределенных типов. (В этом наша нотация отличается от "гибридных" языков наподобие Object Pascal, Java и C++, где система типов старых языков сочетается с объектной технологией, основанной на классах.)
Развернутые типыдают нам больше гибкости, допуская типы, чьи значения обозначают объекты, наряду с типами, чьи значения обозначают ссылки.
Решающее слово в создании гибкой системы типов принадлежит наследованиюи связанному с ним понятию совместимости. Тем самым преодолевается главное ограничение классических типизированных языков, к примеру, Pascal и Ada, в которых оператор x := y требует, чтобы тип x и y был одинаковым. Это правило слишком строго: оно запрещает использовать сущности, которые могут обозначать объекты взаимосвязанных типов ( SAVINGS_ACCOUNT и CHECKING_ACCOUNT ). При наследовании мы требуем лишь совместимости типа y с типом x , например, x имеет тип ACCOUNT , y - SAVINGS_ACCOUNT , и второй класс - наследник первого.
На практике статически типизированный язык нуждается в поддержке множественного наследования. Известны принципиальные обвинения статической типизации в том, что она не дает возможность по-разному интерпретировать объекты. Так, объект DOCUMENT (документ) может передаваться по сети, а потому нуждается в наличия компонентов, связанных с типом MESSAGE (сообщение). Но эта критика верна только для языков, ограниченных единичным наследованием.
Рис. 17.2. Множественное наследование
Универсальностьнеобходима, например, для описания гибких, но безопасных контейнерных структур данных (например class LIST [G] ...). Не будь этого механизма, статическая типизация потребовала бы объявления разных классов для списков, отличающихся типом элементов.
В ряде случаев универсальность требуется ограничить, что позволяет использовать операции, применимые лишь к сущностям родового типа. Если родовой класс SORTABLE_LIST поддерживает сортировку, он требует от сущностей типа G , где G - родовой параметр, наличия операции сравнения. Это достигается связыванием с G класса, задающего родовое ограничение, - COMPARABLE :
Читать дальшеИнтервал:
Закладка: