Бертран Мейер - Основы объектно-ориентированного программирования
- Название:Основы объектно-ориентированного программирования
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бертран Мейер - Основы объектно-ориентированного программирования краткое содержание
Фундаментальный учебник по основам объектно-ориентированного программирования и инженерии программ. В книге подробно излагаются основные понятия объектной технологии – классы, объекты, управление памятью, типизация, наследование, универсализация. Большое внимание уделяется проектированию по контракту и обработке исключений, как механизмам, обеспечивающим корректность и устойчивость программных систем.
В книге Бертрана Мейера рассматриваются основы объектно-ориентированного программирования. Изложение начинается с рассмотрения критериев качества программных систем и обоснования того, как объектная технология разработки может обеспечить требуемое качество. Основные понятия объектной технологии и соответствующая нотация появляются как результат тщательного анализа и обсуждений. Подробно рассматривается понятие класса - центральное понятие объектной технологии. Рассматривается абстрактный тип данных, лежащий в основе класса, совмещение классом роли типа данных и модуля и другие аспекты построения класса. Столь же подробно рассматриваются объекты и проблемы управления памятью. Большая часть книги уделена отношениям между классами – наследованию, универсализации и их роли в построении программных систем. Важную часть книги составляет введение понятия контракта, описание технологии проектирования по контракту, как механизма, обеспечивающего корректность создаваемых программ. Не обойдены вниманием и другие важные темы объектного программирования – скрытие информации, статическая типизация, динамическое связывание и обработка исключений. Глубина охвата рассматриваемых тем делает книгу Бертрана Мейера незаменимой для понимания основ объектного программирования.
Основы объектно-ориентированного программирования - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Выбор подходящего алгоритма поиска, основанного на реализации таблицы t , является делом лишь того модуля, который организует эту таблицу.
Модуль-клиент C , содержащий упомянутое обращение к подпрограмме, мог бы получить t от одного из своих собственных клиентов (в виде аргумента вызова подпрограммы). Тогда для C имя t является лишь абстрактным идентификатором структуры данных, к детальному описанию которой он и не может иметь доступа.
Можно рассматривать Независимость Представлений как расширение правила Скрытия Информации (инкапсуляции), существенное для беспрепятственной разработки больших систем: решения по реализации могут часто изменяться, и клиенты должны быть защищены от этого (См. "Скрытие информации", лекция 3). Но требование Независимости Представлений идет еще дальше. Если обратиться к его полномасштабным последствиям, то оно означает защиту клиентов модуля от изменений не только во время жизненного цикла проекта, но и во время выполнения- а это намного меньший временной интервал! В рассматриваемом примере, желательно, чтобы подпрограмма has адаптировалась автоматически к виду таблицы t во время выполнения программы, даже если этот вид изменился со времени последнего обращения к подпрограмме.
Выполнение требования Независимости Представлений поможет также реализовать связанный с ним принцип Единственного Выбора, сформулированный при обсуждении модульности, который предписывает избегать ситуаций, связанных с разбором вариантов, например
if "t это массив, управляемый хешированием" then
"Применить поиск с хешированием"
elseif "t это дерево двоичного поиска" then
"Применить обход дерева двоичного поиска"
elseif
(и т.д.)
end
Было бы в равной степени неудобно иметь такую структуру в самом модуле (нельзя же ожидать, что модуль, организующий таблицу, знает обо всех текущих и будущих вариантах), так и воспроизводить ее в каждом модуле-клиенте. (См. "Единственный выбор", лекция 3) Решение состоит в том, чтобы обеспечить автоматический выбор, осуществляемый системой исполнения. Такова будет роль динамического связывания (dynamic binding), ключевой составляющей ОО-подхода, которая подробно будет рассматриваться при обсуждении наследования. (См. "Динамическое связывание" ("Dynamic binding"), лекция 14)
Факторизация Общего Поведения
Если требование Независимости Представлений отражает позицию клиента - игнорирование внутренних деталей и вариантов реализации - то последнее требование отражает позицию разработчиков повторно используемых классов. Их цель в получении преимуществ от любой общности (commonality), которая может существовать в семействе или подсемействе реализаций.
Многообразие реализаций, имеющее место в некоторых проблемных областях, требует, как уже отмечалось, решения, основанного на семействе модулей. Часто это семейство настолько велико, что естественно поискать соответствующие подсемейства. В случае табличного поиска первая попытка классификации может привести к трем обширным подсемействам:
[x].Таблицы, организуемые по некоторой схеме хеширования.
[x].Таблицы, организуемые как некоторая разновидность деревьев.
[x].Таблицы, организуемые последовательно.
Каждая из этих категорий охватывает много вариантов, но в большинстве случаев можно найти существенную общность между этими вариантами. Рассмотрим, например, семейство последовательных реализаций - таких, в которых элементы сохраняются и отыскиваются в порядке их первоначального включения в таблицу.
Рис. 4.1. Некоторые возможные реализации таблицы
Возможными представлениями последовательной таблицы являются массив, связный список и файл. Но независимо от варианта такой реализации, клиенты должны иметь возможность для любой последовательно организованной таблицы рассматривать ее элементы один за другим, перемещая (воображаемый) курсор, указывающий позицию элемента, рассматриваемого в настоящий момент. При таком подходе можно переписать подпрограмму поиска для последовательных таблиц в виде:
has (t: SEQUENTIAL_TABLE; x: ELEMENT): BOOLEAN is
-- Содержится ли x в последовательной таблице t?
do
from start until
after or else found (x)
loop
forth
end
Result := not after
end
Это представление основано на использовании четырех подпрограмм, которые должны иметься в любой последовательной реализации таблицы(Подробно методика работы с курсором будет рассмотрена в лекции 5курса "Основы объектно-ориентированного проектирования""Активные структуры данных" ("Active data structures"). ):
[x]. start (начать) , переместить курсор к первому элементу, если он имеется.
[x]. forth (следующий) , переместить курсор к следующей позиции.
[x]. after (после) , булев запрос, переместился ли курсор за последний элемент.
[x]. found (x) , булев запрос, возвращающий true, когда курсор указывает на элемент, имеющий значение x .
Рис. 4.2. Последовательная структура с курсором
Несмотря на сходство с шаблоном подпрограммы, использованным в начале этого обсуждения, новый текст - это уже не шаблон, это настоящая подпрограмма, написанная в непосредственно исполняемой нотации (такая нотация используется в лекциях 7-18 этого курса). Если задать реализации для четырех операций start , forth , after и found , то можно откомпилировать и выполнить последнюю версию has .
Каждое представление последовательной таблицы требует соответствующего представления курсора. Три примера таких представлений основаны на работе с массивом, связным списком и файлом.
В первом из них используется массив из capacity элементов, и таблица занимает позиции от 1 до count + 1. (Последнее значение необходимо в случае, когда курсор переместился на позицию после ( "after" ) последнего элемента.)
Рис. 4.3. Представление последовательной таблицы с курсором на основе массива
Во втором представлении используется связный список, в котором доступ к первому элементу обеспечивается по ссылке first_cell и каждый элемент связан со следующим по ссылке right . При этом курсор можно представить ссылкой cursor .
Рис. 4.4. Представление последовательной таблицы с курсором на основе связного списка
В третьем представлении используется последовательный файл, в котором курсор представляет просто текущую позицию чтения.
Рис. 4.5. Представление последовательной таблицы с курсором на основе последовательного файла
Читать дальшеИнтервал:
Закладка: