Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции
- Название:Феномен науки. Кибернетический подход к эволюции
- Автор:
- Жанр:
- Издательство:ЭТС
- Год:2000
- Город:Москва
- ISBN:5-93386-019-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции краткое содержание
Автор книги — выдающийся ученый, физик и кибернетик, создатель языка Рефал и нового направления в программировании, связанного с преобразованием программ. Известен широкому кругу отечественных читателей как составитель сборника “Физики шутят”. Вынужденный покинуть Родину, с 1977 года он живет и работает в США.
В этой книге В. Ф. Турчин излагает свою концепцию метасистемного перехода и с ее позиций прослеживает эволюцию мира от простейших одноклеточных организмов до возникновения мышления, развития науки и культуры. По вкладу в науку и философию монография стоит в одном ряду с такими известными трудами как “Кибернетика” Н. Винера и “Феномен человека” П. Тейяра де Шардена.
Книга написана ярким образным языком, доступна читателю с любым уровнем подготовки. Представляет особый интерес для интересующихся фундаментальными вопросами естествознания.
Замечания по электронной версии книги присылайте, пожалуйста, членам редакционного совета. Спасибо!
Редакционный совет: А. В. Климов, А. М. Чеповский, В. С. Штаркман
Феномен науки. Кибернетический подход к эволюции - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
P ( x ) ≡ x ∈ x . (12.1)
Тогда по определению множества М все его элементы х обладают свойством, противоположным Р ( х ):
x ∈ M ≡ ¬ P ( x ). (12.2)
Теперь поставим вопрос: является ли само множество M своим элементом, т. е. истинно ли P ( M )? Если P ( M ) истинно, то M ∈ M , согласно определению (12.1). Но в таком случае, подставляя M вместо х в утверждение (12.2), мы получаем ¬ P ( M ). Если M входит в множество M , то по определению последнего оно не должно обладать свойством P . И напротив, если P ( M ) ложно, т. е. имеет место P ( M ), то согласно (12.2) М должно входить в M , т. е. Р ( М ) истинно. Таким образом, P ( M ) не может быть ни истинным, ни ложным. С точки зрения формальной логики мы доказали две импликации:
P ( M ) ⊃ ¬ P ( M ), ¬ P ( M ) ⊃ P ( M ).
Если выразить импликацию через отрицание и дизъюнкцию и воспользоваться свойством дизъюнкции A ∨ A ≡ A , то первое высказывание превратится в ¬ P ( M ), а второе — в P ( M ). Мы получили формальное противоречие и, следовательно, из теории множеств можно вывести что угодно.
Парадоксы создали угрозу для теории множеств и основанного на ней математического анализа; возникло несколько философско-математических направлений, предлагавших различные выходы из тупика. Наиболее радикальное направление во главе с Брауэром, получившее название интуиционизма , потребовало не только полного отказа от теории множеств Кантора, но и коренного пересмотра логики. Интуиционистская математика оказалась довольно сложной и с трудом поддающейся развитию, а поскольку классический анализ при этом выбрасывался на свалку, такая позиция была найдена неприемлемой для большинства математиков. «Никто не может изгнать нас из рая, созданного для нас Кантором», — заявил Гильберт, и он нашел выход, который сохранил основное содержание теории множеств и в то же время устранил парадоксы и противоречия. Вместе со своими последователями Гильберт сформировал главное русло, по которому направилось течение математической мысли.
Решение Гильберта полностью соответствует духу развития европейской математики. Если Кантор рассматривал свою теорию с сугубо платоновских позиций — как исследование свойств реально существующих и действительно («актуально») бесконечных множеств, то, по Гильберту, множества надо рассматривать просто как некоторые объекты, удовлетворяющие аксиомам, аксиомы же надо сформулировать так, чтобы определения, приводящие к парадоксам, стали невозможны. Первая система аксиом теории множеств, не порождающая противоречий, была предложена Цермело в 1908 г., затем она была модифицирована. Были предложены и другие системы, однако отношение к теории множеств осталось неизменным. В современной математике теория множеств играет роль каркаса, скелета, который соединяет в единое целое все ее части, но не виден снаружи и не соприкасается непосредственно с внешним миром.
По-настоящему понять эту ситуацию и совместить формальный и содержательный аспекты математики можно только с «языковой» точки зрения на математику. Эта точка зрения, которую мы настойчиво проводили на протяжении всей книги, приводит к следующей концепции. Никаких актуально бесконечных множеств нет ни в реальности, ни в нашем воображении. Единственное, что мы можем найти в своем воображении, это представление о потенциальной бесконечности, т. е. о возможности неограниченно повторять какой-либо акт. Здесь надо полностью согласиться с интуиционистской критикой канторовской теории множеств и отдать должное ее глубине и проницательности. Однако для того, чтобы использовать теорию множеств так, как это делает современная математика, вовсе не надо насиловать свое воображение и пытаться представить «актуальную» бесконечность. «Множества», которые используются в математике — это просто символы, языковые объекты, используемые для построения моделей действительности. Постулируемые свойства этих объектов частично соответствуют интуитивным понятиям совокупности и потенциальной бесконечности, поэтому интуиция частично помогает в развитии теории множеств, но иногда и обманывает. Когда новый математический (языковый) объект определяется как «множество», построенное так-то и так-то, это определение не имеет никакого значения для связи объекта с внешним миром, т. е. для его интерпретации, а нужно лишь для привязки к каркасу математики, для зацепления внутренних колесиков математических моделей.
Таким образом, язык теории множеств является фактически метаязыком по отношению к языку содержательной математики и в этом он подобен языку логики. Если логика — это теория доказательства математических утверждений, то теория множеств — это теория конструирования математических языковых объектов.
Почему же именно интуитивное понятие множества легло в основу математического конструирования?
Определить вновь вводимый математический объект — значит указать его семантические связи с уже введенными объектами. За исключением тривиального случая, когда речь идет о пере обозначении — замене знака на знак, этих связей всегда бывает много и в них может участвовать много ранее введенных объектов. И вот вместо того, чтобы говорить, что новый объект связан так-то и так-то с такими-то и такими-то старыми объектами, говорят, что новый объект есть множество, построенное так-то и так-то из старых объектов. Например, рациональное число есть результат деления двух натуральных чисел: числителя на знаменатель. Число 5/ 7есть объект х такой, что значение функции «числитель» ( x ) есть 5, а значение функции «знаменатель» ( x ) есть 7. Между тем в математике определяют рациональное число просто как пару натуральных чисел. Точно так же надо было бы говорить только о реализации действительного числа различными последовательностями рациональных чисел, понимая под этим определенную семантическую связь между новыми и старыми языковыми объектами. Вместо этого говорят, что действительное число есть множество последовательностей рациональных чисел. В настоящее время эту терминологию следует рассматривать как пережиток платоновских воззрений, согласно которым важны не языковые элементы, а скрывающиеся за ними элементы «идеальной реальности»; поэтому, чтобы приобрести право на существование, объект должен был определяться как «реальное» множество. Идея множества выдвинулась на «руководящую работу» в математике как один из аспектов связи имя-значение (а именно того факта, что значением обычно является конструкция, состоящая из некоторого числа элементов), а вряд ли стоит доказывать, что связь имя-значение всегда была и будет основой языкового конструирования.
Читать дальшеИнтервал:
Закладка: