Коллектив авторов - Защита от хакеров корпоративных сетей
- Название:Защита от хакеров корпоративных сетей
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Защита от хакеров корпоративных сетей краткое содержание
В книге рассматривается современный взгляд на хакерство, реинжиниринг и защиту информации. Авторы предлагают читателям список законов, которые определяют работу систем компьютерной безопасности, рассказывают, как можно применять эти законы в хакерских технологиях. Описываются типы атак и возможный ущерб, который они могут нанести компьютерным системам. В книге широко представлены различные методы хакинга, такие, как поиск различий, методы распознавания шифров, основы их вскрытия и схемы кодирования. Освещаются проблемы безопасности, возникающие в результате непредсказуемого ввода данных пользователем, методы использования машинно-ориентированного языка, возможности применения мониторинга сетевых коммуникаций, механизмы туннелирования для перехвата сетевого трафика. В книге представлены основные сведения о хакерстве аппаратных средств, вирусах, троянских конях и червях. В этой книге читатель узнает о методах, которые в случае неправильного их применения приведут к нарушению законодательства и связанным с этим последствиям.
Лучшая защита – это нападение. Другими словами, единственный способ остановить хакера заключается в том, чтобы думать, как он. Эти фразы олицетворяют подход, который, по мнению авторов, позволит наилучшим образом обеспечить безопасность информационной системы.
Перевод: Александр Петренко
Защита от хакеров корпоративных сетей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Конспект
Концепции криптографии
· Незашифрованные данные называются открытым (незашифрованным) текстом ( plaintext), а зашифрованные – зашифрованным текстом (ciphertext).
· Криптографические системы могут быть симметричными и асимметричными. В симметричных криптосистемах используется один секретный ключ, в то время как у асимметричных – два: открытый и секретный (личный).
· Криптография с открытым ключом была изобретена Уитфилдом Диффи (Whitfield Diffie) и Мартином Хеллманом (Martin Hellman) как безопасный метод обмена секретными ключами.
Стандарты алгоритмов шифрования
· Причина использования в наши дни большого количества криптографических алгоритмов заключается в том, что каждый алгоритм хорош по-своему. Каждый из них можно охарактеризовать скоростью обработки данных, удобством использования и безопасностью. Для обоснованного выбора наиболее подходящего в конкретной ситуации алгоритма следует досконально знать их возможности.
· Стандарт шифрования данных DES (Data Encryption Standard) – наиболее известный алгоритм шифрования, используемый до сих пор на практике. Но в силу его древности следует избегать применения DES в новых разработках или для защиты особо важных данных.
· Для замены DES был разработан продвинутый стандарт шифрования AES (Advanced Encryption Standard), в котором предусмотрено использование ключей различной длины.
· Принципы работы асимметричных криптосистем отличаются от принципов работы симметричных. Если в симметричных криптосистемах применяется единственный ключ в циклах обработки сообщения, то асимметричный алгоритм основан на факторизации двух больших целых чисел (разложении двух больших целых чисел на сомножители).
· Алгоритмы RSA и Диффи-Хеллмана (Diffie-Hellman) – два наиболее широко используемых асимметричных алгоритма в настоящее время.
«Грубая сила»
· При наличии времени единственная обреченная на успех атака на симметричную криптографическую систему – это атака «грубой силы». Следует позаботиться о том, чтобы необходимое для успешной атаки время составляло годы, десятки лет или еще более длинный период времени.
· Зачастую возможностей одного компьютера для организации атаки «грубой силы» недостаточно. Но если в атаку будут волечены несколько параллельно работающих компьютеров, то шансы на ее успех резко возрастают.
· Наиболее часто атака «грубой силы» используется для вскрытия паролей.
Неверное использование алгоритмов шифрования
· Алгоритм Диффи-Хеллмана обмена ключами уязвим к атакам типа «злоумышленник посередине» (man-in-the-middle attacks).
· По возможности следует избегать использования паролей в формате кэш-величин LANMAN, потому что реализация этого протокола способствует относительно легкому вскрытию паролей.
· Следует особенно внимательно подходить к хранению ключей, поскольку в случае компрометации секретного или личного ключа компрометируются защищаемые ими данные.
Любительская криптография
· Любой недостаточно криптостойкий алгоритм шифрования (подобно алгоритму, основанному на операции XOR) может быть взломан с минимальными усилиями.
· Частотный анализ (frequency analysis) – мощное средство расшифровки сообщений разумного размера, не защищенных современными криптографическими алгоритмами.
· Иногда производители пытаются сохранить информацию в тайне при помощи простых небезопасных криптоалгоритмов (как, например, Base64) или алгоритмов сжатия.
Часто задаваемые вопросы
Вопрос:Существуют ли криптографические алгоритмы, гарантирующие 100 %-ую безопасность?
Ответ:Да, существуют. OTP (One Time Pad) – единственный алгоритм, гарантирующий абсолютную безопасность при безупречной реализации. Алгоритм OTP – это фактически шифр Вернама (Vernam), который был изобретен в компании AT&T в далеком 1917 году. Шифр Вернама (Vernam) представляет класс так называемых потоковых шифров, которые непрерывно, побитно шифруют поток данных вместо шифрования одного блока данных за другим в блочных шифрах. У алгоритма OTP два существенных недостатка. Во-первых, для его использования необходимо сгенерировать последовательность действительно случайных чисел. Во-вторых, количество случайных чисел в последовательности должно совпадать с числом бит в шифруемом сообщении. Для работы алгоритма нужно обеспечить раздельную передачу сообщения и ключа, гарантирующую сохранность ключа в тайне. Никогда один ключ не используется дважды для шифрования другого сообщения. Если будут перехвачены два сообщения, зашифрованные одним и тем же ключом, то восстановить ключ и расшифровать сообщение очень просто. Причина, по которой алгоритм OTP не получил широкого распространения, заключается в сложности построения датчика действительно случайных чисел (как уже об этом упоминалось) и сложности обеспечения безопасности распределенного ключа.
Вопрос:Как долго еще будет использоваться DES? Ответ:Скорее всего, из-за широкого распространения систем на основе DES алгоритм будет активно использоваться еще лет 5-10. Особенно в тех приложениях, где обеспечение безопасности зашифрованных данных не стоит на первом месте. Считается, что для некоторых приложений DES вполне достаточно, потому что средний хакер пока не обладает достаточными ресурсами для эффективного взлома алгоритма. Предполагается, что DES может использоваться как средство, затрудняющее прослушивание трафика, по крайней мере до широкого распространения протокола IPv6. DES гораздо быстрее алгоритма 3-DES и лучше приспособлен к условиям работы в виртуальных частных сетях (VPN) первых поколений, которые могут быть несовместимы снизу вверх с новым стандартом AES. В редких случаях, для обеспечения совместимости, в правительственных учреждениях будут устанавливаться новые криптосистемы, основанные на DES.
Вопрос:После нападений террористов 11 сентября на США особое значение приобрел вопрос использования террористами средств криптографии. Появились высказывания о предоставлении правительственным органам возможности расшифровки зашифрованных сообщений при помощи «потайной калитки», встроенной во все криптосистемы. Почему так нельзя сделать? Ответ:Наличие «потайной калитки» в криптографических алгоритмах, при помощи которой любой может расшифровать сообщение, – головная боль для всех пользователей криптографии. Вероятнее всего, ключи от «потайной калитки» будут храниться в одном месте, на которое тут же нацелятся хакеры. Как только хранилище ключей будет скомпрометировано, а рано или поздно это произойдет, все данные можно считать скомпрометированными. Кроме того, необходимо будет создать новую бюрократическую машину, управляющую доступом через «потайную калитку». Возможно, она будет создана по образу и подобию нынешней организации подключения подслушивающих устройств. Потребуется также создание групп надзора, следящих за соблюдением законности. Дополнительно потребовалось бы дооснастить все эксплуатируемые криптосистемы «потайной калиткой», возможно, в виде комбинации открытого ключа и ключа доверия. Реализация новых программ шифрования потребовала бы месяцы на разработку и годы на внедрение. В этих условиях усилия хакеров сосредоточатся на взломе криптографических алгоритмов при помощи ключа доверия, в лучшем случае поставив под вопрос безопасность криптосистем.
Читать дальшеИнтервал:
Закладка: