Коллектив авторов - Защита от хакеров корпоративных сетей
- Название:Защита от хакеров корпоративных сетей
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Защита от хакеров корпоративных сетей краткое содержание
В книге рассматривается современный взгляд на хакерство, реинжиниринг и защиту информации. Авторы предлагают читателям список законов, которые определяют работу систем компьютерной безопасности, рассказывают, как можно применять эти законы в хакерских технологиях. Описываются типы атак и возможный ущерб, который они могут нанести компьютерным системам. В книге широко представлены различные методы хакинга, такие, как поиск различий, методы распознавания шифров, основы их вскрытия и схемы кодирования. Освещаются проблемы безопасности, возникающие в результате непредсказуемого ввода данных пользователем, методы использования машинно-ориентированного языка, возможности применения мониторинга сетевых коммуникаций, механизмы туннелирования для перехвата сетевого трафика. В книге представлены основные сведения о хакерстве аппаратных средств, вирусах, троянских конях и червях. В этой книге читатель узнает о методах, которые в случае неправильного их применения приведут к нарушению законодательства и связанным с этим последствиям.
Лучшая защита – это нападение. Другими словами, единственный способ остановить хакера заключается в том, чтобы думать, как он. Эти фразы олицетворяют подход, который, по мнению авторов, позволит наилучшим образом обеспечить безопасность информационной системы.
Перевод: Александр Петренко
Защита от хакеров корпоративных сетей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В последнее время значительно увеличилось число программистов, начавших использовать строковые функции с ограничениями, например функцию strncpy() вместо strcpy(). Этих программистов научили, что функции с ограничениями защищают от переполнения буфера. Как же они удивятся, когда узнают, что зачастую применяют их неправильно.
Широко известна общая ошибка использования функций с ограничениями, получившая название «минус один», когда максимальная длина записываемой в буфер строки приравнивается размеру буфера. При этом часто забывают об обязательном признаке конца строки – завершающем строку нулевом байте. Некоторые функции с ограничениями могут не включать в строку завершающего символа, позволяя строке незаметно слиться со строкой из рядом расположенного буфера. Если позднее обратиться к ней, то два буфера могут рассматриваться как один, способствуя переполнению буфера.
Рассмотрим пример:[buf1 – 32 bytes \0][buf2 – 32 bytes \0]
После записи в буфер в bufl ровно 32 байтов два буфера выглядят следующим образом:
[buf1 – 32 bytes of data ][buf2 – 32 bytes \0]
Любая последующая попытка переслать из буфера bufl данные может привести к копированию 64-байтной строки данных и переполнению буфера, в который записываются данные.
Другое часто встречающееся неверное использование функций с ограничениями заключается в ошибках программирования или в неправильном расчете контролирующих величин во время выполнения программы. Это может произойти из-за нелепой ошибки или несогласованных изменений в программе в процессе разработки, например в программе был определен буфер фиксированного размера, размер которого не был откорректирован в соответствии с внесенными в программу изменениями. Помните, что размер обрабатываемых данных должен быть согласован с размером буфера получателя информации, а не ее источника. Известны примеры использования в проверках функций strlen(), которые во время выполнения программы подсчитывали число байт в буфере, из которого данные копировались. Эта простая ошибка делает бесполезной любую проверку размеров буферов.
Опасно переполнение не только всего стека, но и так называемое частичное переполнение буфера, когда в стеке происходит подмена не всех, а только отдельных сохраненных значений. Месторасположение буфера в стеке и контроль адресов, по которым копируются в буфер данные, могут сделать невозможным запись в буфер такого количества данных, чтобы при переполнении буфера добраться до области хранения в стеке значения регистра EIP и подменить его. В этом случае при помощи команды ret нельзя передать управление нужной программе, но возможность контроля процессора сохраняется. Для этого можно попытаться подменить содержимое регистра EBP или доступные данные в стеке. Позднее этим можно воспользоваться для взятия под свой контроль атакуемой программы, чтобы заставить ее выполнить не предусмотренные в ней действия.
Например, на сайте www.phrack.org была опубликована статья, в которой рассказан способ получения контроля над вызванной функцией путем изменения единственного байта сохраненного в стеке содержимого регистра EBP. Познакомиться со статьей можно по адресу www.phrack.org/show.php?p=55&a=8.
Побочный эффект проявляется при переполнении буфера вблизи вершины стека, рядом с которым сначала находится область сохранения критических данных, а затем содержимое регистра EIP. При подмене этих данных предпочтительнее было бы завершить работу уязвимой программы, чем позволить злоумышленнику воспользоваться ею. Часто после подмены критических данных программа пытается выполниться с поврежденным стеком. Для противодействия подобным атакам переполнения буфера были придуманы, например, системы, защищенные проверочными величинами (canary-protected systems). В этих системах перед командой завершения функции ret проверяется целостность сохраненных в стеке проверочных величин. Если их целостность нарушена, то, как правило, программа завершается. Но и они не гарантируют полной защиты. Если проверочные величины не псевдослучайные величины, то их можно восстановить. При использовании неизменяемых проверочных величин, а для контроля целостности иногда используются и они, можно подменить данные стека при переполнении буфера, но при этом восстановить проверочные величины для обхода проверки.
Перезапись указателя функции в стеке
Иногда программисты сохраняют в стеке указатели функций и затем по мере необходимости используют их. Часто указатели используются там, где требуется динамически изменять часть программы. Машины сценариев (scripting engines; машина сценариев – приложение, способное выполнять сценарии (script), написанные наязыке сценариев, например VBScript или JavaScript) и программы синтаксического анализа часто пользуются этим приемом. Указатель функции – это адрес, по которому будет передано управление командой вызова функции call прямо или косвенно, основываясь на сохраненных в стеке данных. При подмене в стеке указателей можно будет управлять вызовами функций, не влияя на содержимое регистра EIP.
Чтобы воспользоваться указателем функции в стеке, следует вместо подмены содержимого регистра EIP подменить часть стека с сохраненным адресом функции. Подмена указателя вызываемой функции, как и перезапись области хранения содержимого регистра EIP, позволит выполнить нужный программный код. Нужно только выяснить содержимое регистров и написать программу переполнения буфера, что вполне возможно.
Переполнения области динамически распределяемой памяти
До сих пор в главе описывались атаки на буфер памяти, размещенный в стеке. Известны простые способы влияния на работу программы, если ее буфер данных расположен в стеке. Поэтому можно считать, что вопросы переполнения буфера хорошо изучены. Кроме стека, в программе используется еще один тип распределения памяти – область динамически распределяемой памяти («куча»).
Функции malloc- типа HeapAlloc(), malloc() и new() выделяют программе область динамически распределяемой памяти, а функции HeapFree(), free() и delete() освобождают ее. Управляет областью динамически распределяемой памяти компонента операционной системы, известная как менеджер кучи (heap manager), который выделяет динамически распределяемую память процессам, обеспечивая при необходимости увеличение ее размера.
Динамически распределяемая память отличается от памяти стека тем, что это постоянный объект, время жизни которого не ограничено временем выполнения создавшей и использующей его функции. Это означает, что распределенная функцией динамически распределяемая память остается распределенной, пока она не будет явно освобождена. Поэтому переполнение динамически распределяемой памяти может никак не отразиться на работе программы до тех пор, пока она не будет повторно использована. В динамически распределяемой памяти не хранится что-либо похожее на содержимое регистра EIP, но в ней часто хранятся не менее важные вещи.
Читать дальшеИнтервал:
Закладка: