Олег Варламов - Мивары: 25 лет создания искусственного интеллекта
- Название:Мивары: 25 лет создания искусственного интеллекта
- Автор:
- Жанр:
- Издательство:Эрнст Хачатурян
- Год:неизвестен
- ISBN:9785256016500
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Варламов - Мивары: 25 лет создания искусственного интеллекта краткое содержание
Мивары: 25 лет создания искусственного интеллекта - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Как видно, в современной теории ИИ кроме предикатного подхода уже разработано большое количество других подходов, кардинально отличающихся от исчисления предикатов и т.п. Подчеркнем, что продукционный подход и его развитие в миварных сетях являются еще одной альтернативой исчислению предикатов при создании ИИ.
2. Основные преимущества миварного подхода
2.1. Обзор достижений в области искусственного интеллекта
В области ИИ существует две фундаментальные проблемы – это представление знаний и поиск [264, стр. 42]. Первая проблема относится к получению новых знаний с помощью формального языка. Поиск – это метод решения проблемы, в котором систематически просматривается пространство состояний задачи, т.е. альтернативных стадий ее решения.
В области ведения игр широкое применение нашли разнообразные человеческие игры: пятнашки, шашки, шахматы и т.п. Эти игры ведутся с использованием четко определенного набора правил, что уже само по себе является важным ограничением по сравнению с реальными задачами, где правил может не быть совсем, или они могут изменяться по желанию противников. Позиции фигур легко представимы в компьютерной программе и не требуют создания сложных формализмов, необходимых для передачи семантических тонкостей более сложных предметных областей. Тестирование игровых программ не порождает никаких финансовых или этических проблем. Поиск в пространстве состояний – принцип, лежащий в основе большинства исследований в области ведения игр. Игры могут порождать большие пространства состояний, а для поиска в них требуются мощные методики, которые называют "эвристики". Эвристики имеют положительные и отрицательные стороны. С положительной стороны, они ускоряют поиск и определяют, какие альтернативы следует рассматривать в первую очередь, что значительно сокращает пространство состояний задачи. А с отрицательной стороны, эвристики потенциально способны упустить правильное решение. Большая часть того, что Дж. Люгер называет разумностью, опирается на эвристики, которые люди используют в решении задач. Отмечено, что наличие противника усложняет структуру программы, добавляя в нее элементы непредсказуемости [264, стр. 43]. Как видно из вышесказанного, в 20 веке в теории игр решались простые задачи по сравнению с требованиями к познающе-диагностическим системам, для которых создан миварный подход. Именно такой упрощенный подход к решению задач традиционных ученых напоминает старый анекдот, в котором человек потерял часы в темном месте, а ищет их под фонарем, объясняя это тем, что здесь светлее. Это и есть уход от решения реальных задач к "игрушечным", т.к., что делать с реальными задачами не известно (там нет фонаря и темно), а вот под фонарем светло, и "игрушечные" задачи можно попробовать решить. Конечно, наука развивается от простого к сложному, но решая упрощенные задачи не надо говорить и обещать решение реальных задач, тем более запрещать альтернативные подходы к решению, с чем нам, к сожалению, регулярно приходится сталкиваться… Миварный подход изначально предназначен для решения сложных реальных задач, поэтому он другой, и надо это признать.
Автоматическое доказательство теорем – одна из старейших областей возможного применения ИИ, где было много достижений, исследований и программ, включая Универсальный решатель задач Ньюэлла и Саймона. Люгер подчеркивает, что именно "…эта ветвь принесла наиболее богатые плоды…" [264, стр. 44]. Благодаря исследованиям в этой области были формализованы алгоритмы поиска и разработаны языки формальных представлений, такие как исчисление предикатов и логический язык программирования Пролог. Приведем обоснование Дж. Люгера: "… привлекательность автоматического доказательства теорем основана на строгости и общности логики. В формальной системе логика располагает к автоматизации. Разнообразные проблемы можно попытаться решить, представив описание задачи и существенно относящуюся к ней информацию в виде логических аксиом и рассматривая различные случаи задачи как теоремы, которые нужно доказать. Этот принцип лежит в основе автоматического доказательства теорем и систем математических обоснований" [264, стр. 44]. Далее следует замечательный вывод и итог 20 века в этой наиболее богатой ветви: "К сожалению, в ранних пробах написать программу для автоматического доказательства, не удалось разработать систему, которая бы единообразно решала сложные задачи" [264, стр. 44]. Таким образом, Дж. Люгер подтверждает наш тезис о том, что в прошлом веке даже в самых передовых областях ИИ ученые не смогли решить сложные задачи, а значит, нужны принципиально новые подходы и исследования, к числу которых относится и миварный подход.
Приведем обоснование ограниченности возможностей автоматического доказательства теорем, которое имеет важное значение для дальнейших исследований, как минимум, показывая, куда НЕ надо идти. Как говорится, отрицательный результат – это тоже результат!!! Итак, обоснование Дж. Люгера: "Это было обусловлено способностью любой относительно сложной логической системы сгенерировать бесконечное количество доказуемых теорем: без мощных методик (эвристик), которые бы направляли поиск, программы доказывали большие количества не относящихся к делу теорем, пока не натыкались на нужную. Из-за этой неэффективности многие утверждают, что чисто формальные синтаксические методы управления поиском в принципе не способны справиться с такими большими пространствами, и единственная альтернатива этому – положиться на неформальные, специально подобранные к случаю (лат "ad hoc") стратегии, как это, похоже, делают люди. Это один из подходов, лежащих в основе экспертных систем… и он оказался достаточно плодотворным" [264, стр. 44]. Таким образом, возникают новые проблемы: работа с бесконечными множествами теорем и разработка эвристик, про которые ранее было показано, что они не гарантируют решение задачи. Конечно, за прошедшее время ученым удалось разработать мощные эвристики, основанные на оценке синтаксической формы логического выражения, которые в результате понижают сложность пространства поиска. Кроме того, пришло понимание, что системе не обязательно решать особо сложные проблемы без человеческого вмешательства. "Многие современные программы доказательств работают как умные помощники, предоставляю людям разбивать задачи на подзадачи и продумывать эвристики для перебора в пространстве возможных обоснований" [264, стр. 44]. Этот вывод может служить обоснованием нашего утверждения, что ИИ – это усилитель человеческих способностей и автоматизация мыслительных процессов. Кроме того, это косвенно подтверждает необходимость введения шкалы измерений интеллектуальности автоматических систем и наличие относительно слабых форм интеллекта у уже существующих компьютерных программ и устройств. Значит, в таком смысле ИИ уже существует и продолжает развиваться, помогая человеку решать сложные задачи.
Читать дальшеИнтервал:
Закладка: