Монк . - Программируем Arduino

Тут можно читать онлайн Монк . - Программируем Arduino - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-db, издательство Издательский дом Питер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Программируем Arduino
  • Автор:
  • Жанр:
  • Издательство:
    Издательский дом Питер
  • Год:
    2017
  • ISBN:
    978-5-496-02385-6
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Монк . - Программируем Arduino краткое содержание

Программируем Arduino - описание и краткое содержание, автор Монк ., читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Программируем Arduino - читать онлайн бесплатно полную версию (весь текст целиком)

Программируем Arduino - читать книгу онлайн бесплатно, автор Монк .
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В заключение

В этой главе вы познакомились с интерфейсом I2C и приемами его использования для организации взаимодействий плат Arduino с периферийными устройствами и другими платами Arduino.

В следующей главе мы исследуем еще одну разновидность последовательного интерфейса, используемого для взаимодействий с периферией. Он называется 1-Wire . Этот интерфейс не получил такого широкого распространения, как I2C, но он используется в популярном датчике температуры DS18B20.

8. Взаимодействие с устройствами 1-Wire

Шина 1-Wire служит целям, похожим на цели шины I2C (глава 7), то есть она обеспечивает возможность взаимодействий микроконтроллеров с периферийными устройствами посредством минимального количества линий передачи данных. Стандарт 1-Wire, разработанный в компании Dallas Semiconductor, свел потребность в линиях до логического минимума — всего одной. Шина имеет более низкое быстродействие, чем I2C, но обладает интересной особенностью — паразитным питанием (parasitic power), позволяющее подключать периферийные устройства к микроконтроллеру всего двумя проводами: GND (ground — земля) и комбинированным проводом питания и передачи данных.

Шина 1-Wire поддерживается более узким диапазоном устройств, чем I2C. Большинство из них производят компании Dallas Semiconductor и Maxim. К их числу относятся устройства идентификации картриджей для принтеров, флеш-память и ЭСППЗУ, а также АЦП. Однако наибольшую популярность среди устройств 1-Wire у радиолюбителей завоевал температурный датчик DS18B20 компании Dallas Semiconductor.

Аппаратная часть 1-Wire

На рис. 8.1 показано, как подключить датчик DS18B20 к плате Arduino, используя всего два контакта и режим паразитного питания DS18B20.

Рис 81Подключение устройства 1Wire к плате Arduino 1Wire это именно - фото 58

Рис. 8.1.Подключение устройства 1-Wire к плате Arduino

1-Wire — это именно шина, а не соединение «точка–точка». К ней можно подключить до 255 устройств, взяв за основу схему, изображенную на рис. 8.1. Если вы пожелаете использовать устройство в режиме нормального питания, то сопротивление 4,7 кОм можно убрать, а вывод Vdd датчика DS18B20 вместо GND соединить непосредственно с контактом 5 В на плате Arduino.

Протокол 1-Wire

Так же как I2C, интерфейс 1-Wire использует понятия ведущего и ведомого устройств. Микроконтроллер играет роль ведущего, а периферийные устройства — ведомых. Каждое ведомое устройство еще на заводе получает уникальный идентификационный номер, который часто называют адресом, чтобы его можно было идентифицировать на шине, к которой подключено множество ведомых. Адрес имеет размер 64 бита, что позволяет иметь примерно 1,8 × 1019 разных идентификационных номеров.

Подобно I2C, протокол 1-Wire предусматривает переключение режима работы шины ведущим устройством на ввод и вывод, чтобы иметь возможность двусторонних взаимодействий. Однако в шине 1-Wire отсутствует отдельная линия передачи тактовых сигналов, поэтому нули и единицы передаются длинными и короткими импульсами. Импульс длительностью 60 мкс обозначает 0, а длительностью 15 мкс — 1.

Обычно линия данных находится под напряжением с уровнем HIGH, но, когда микроконтроллеру (ведущему) требуется послать команду устройству, он генерирует специальный импульс сброса с уровнем LOW длительностью не менее 480 мкс. Вслед за ним следует последовательность импульсов 1 и 0.

Библиотека OneWire

Работу с интерфейсом 1-Wire здорово упрощает библиотека OneWire, которая доступна по адресу http://playground.arduino.cc/Learning/OneWire.

Инициализация 1-Wire

Чтобы инициализировать Arduino как ведущее устройство на шине 1-Wire, сначала нужно подключить библиотеку OneWire:

#include

Затем создать экземпляр OneWire и указать, какой контакт Arduino будет использоваться как линия данных на шине 1-Wire. Эти два действия можно объединить в одну команду, а в роли линии данных использовать любой контакт на плате Arduino — достаточно просто передать номер контакта в виде параметра:

OneWire bus(10);

В данном случае роль линии данных шины будет играть контакт D10.

Сканирование шины

Поскольку каждое ведомое устройство, подключенное к шине, имеет уникальный идентификационный номер, присвоенный на заводе, нужен какой-то способ определить адреса устройств, подключенных к шине. Было бы неблагоразумно «зашивать» адреса устройств в скетч, потому что в случае замены новое ведомое устройство будет иметь уже другой адрес и скетч не сможет обращаться к нему. Поэтому ведущее устройство (Arduino) должно создать своеобразную опись устройств на шине. Здесь следует отметить, что первые 8 бит в адресе определяют «семейство», которому принадлежит устройство, то есть по ним можно определить, является ли устройство, например, датчиком DS18B20 или относится к какому-то другому типу.

В табл. 8.1 перечислены некоторые из наиболее известных кодов семейств для шины 1-Wire. Полный список можно найти на странице http://owfs.sourceforge.net/family.html.

Таблица 8.1.Коды семейств устройств для шины 1-Wire

Код семейства (шестнадцатеричный)

Семейство

Описание

06

iButton 1993

Идентификационный ключ

10

DS18S20

Высокоточный температурный датчик с разрешающей способностью 9 бит

28

DS18B20

Высокоточный температурный датчик с разрешающей способностью 12 бит

1C

DS28E04-100

ЭСППЗУ емкостью 4 Кбайт

В библиотеке OneWire имеется функция search, которую можно использовать для поиска всех ведомых устройств на шине. Следующий пример выводит адреса всех устройств на шине в монитор последовательного порта:

// sketch_08_01_OneWire_List

#include

OneWire bus(10);

void setup()

{

Serial.begin(9600);

byte address[8]; // 64 бита

while (bus.search(address))

{

for(int i = 0; i < 7; i++)

{

Serial.print(address[i], HEX);

Serial.print(" ");

}

// проверить контрольную сумму

if (OneWire::crc8(address, 7) == address[7])

{

Serial.println(" CRC OK");

}

else

{

Serial.println(" CRC FAIL");

}

}

}

void loop()

{

}

На рис. 8.2 показан результат выполнения этого скетча при наличии двух температурных датчиков DS18B20, подключенных к Arduino. Обратите внимание на то, что оба устройства имеют один и тот же код семейства в первом байте, равный 28 (в шестнадцатеричном формате).

Рис 82Список ведомых устройств 1Wire Для работы функции search требуется - фото 59

Рис. 8.2.Список ведомых устройств 1-Wire

Для работы функции search требуется массив размером 8 байт, куда она могла бы поместить следующий найденный адрес. После последнего обнаруженного устройства она возвращает 0. Это позволяет выполнять итерации в цикле while, как в предыдущем примере, пока не будут определены все адреса. Последний байт адреса в действительности является циклической контрольной суммой (Cyclic Redundancy Check, CRC), позволяющей проверить целостность адреса. Библиотека OneWire включает специальную функцию для проверки контрольной суммы CRC.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Монк . читать все книги автора по порядку

Монк . - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Программируем Arduino отзывы


Отзывы читателей о книге Программируем Arduino, автор: Монк .. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x