Морис Бах - Архитектура операционной системы UNIX
- Название:Архитектура операционной системы UNIX
- Автор:
- Жанр:
- Издательство:Издано корпорацией Prentice-Hall.
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Бах - Архитектура операционной системы UNIX краткое содержание
Архитектура операционной системы UNIX - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если подпрограмма open завершается успешно, локальная библиотека оставляет об этом соответствующую отметку в доступной для пользователя структуре, содержащей адрес сетевого узла, идентификатор процесса-спутника, дескриптор файла и другую аналогичную информацию. Библиотечные подпрограммы read и write устанавливают, исходя из дескриптора, является ли файл удаленным, и в случае положительного ответа посылают спутнику сообщение. Процесс-клиент взаимодействует со своим спутником во всех случаях обращения к системным функциям, нуждающимся в услугах удаленной машины. Если процесс обращается к двум файлам, расположенным на одной и той же удаленной машине, он пользуется одним спутником, но если файлы расположены на разных машинах, используются уже два спутника: по одному на каждой машине. Два спутника используются и в том случае, когда к файлу на удаленной машине обращаются два процесса. Вызывая системную функцию через спутника, процесс формирует сообщение, включающее в себя номер функции, имя пути поиска и другую необходимую информацию, аналогичную той, которая входит в структуру сообщения в системе с периферийными процессорами.
Механизм выполнения операций над текущим каталогом более сложен. Когда процесс выбирает в качестве текущего удаленный каталог, библиотечная подпрограмма посылает соответствующее сообщение спутнику, который изменяет текущий каталог, при этом подпрограмма запоминает, что каталог удаленный. Во всех случаях, когда имя пути поиска начинается с символа, отличного от наклонной черты (/), подпрограмма посылает это имя на удаленную машину, где процесс-спутник прокладывает маршрут, начиная с текущего каталога. Если текущий каталог — локальный, подпрограмма просто передает имя пути поиска ядру локальной системы. Системная функция chroot в отношении удаленного каталога выполняется похоже, но при этом ее выполнение для ядра локальной системы проходит незамеченным; строго говоря, процесс может оставить эту операцию без внимания, поскольку только библиотека фиксирует ее выполнение.
Когда процесс вызывает функцию fork, соответствующая библиотечная подпрограмма посылает сообщения каждому спутнику. Процессы — спутники выполняют операцию ветвления и посылают идентификаторы своих потомков клиенту-родителю. Процесс-клиент запускает системную функцию fork, которая передает управление порождаемому потомку; локальный потомок ведет диалог с удаленным потомком-спутником, адреса которого сохранила библиотечная подпрограмма. Такая трактовка функции fork облегчает процессам-спутникам контроль над открытыми файлами и текущими каталогами. Когда процесс, работающий с удаленными файлами, завершается (вызывая функцию exit), подпрограмма посылает сообщения всем его удаленным спутникам, чтобы они по получении сообщения проделали то же самое. Отдельные моменты реализации системных функций exec и exit затрагиваются в упражнениях.
Преимущество связи типа Newcastle состоит в том, что обращение процесса к удаленным файлам становится "прозрачным" (незаметным для пользователя), при этом в ядро системы никаких изменений вносить не нужно. Однако, данной разработке присущ и ряд недостатков. Прежде всего, при ее реализации возможно снижение производительности системы. В связи с использованием расширенной Си-библиотеки размер используемой каждым процессом памяти увеличивается, даже если процесс не обращается к удаленным файлам; библиотека дублирует функции ядра и требует для себя больше места в памяти. Увеличение размера процессов приводит к удлинению продолжительности периода запуска и может вызвать большую конкуренцию за ресурсы памяти, создавая условия для более частой выгрузки и подкачки задач. Локальные запросы будут исполняться медленнее из-за увеличения продолжительности каждого обращения к ядру, замедление может грозить и обработке удаленных запросов, затраты по пересылке которых по сети увеличиваются. Дополнительная обработка удаленных запросов на пользовательском уровне увеличивает количество переключений контекста, операций по выгрузке и подкачке процессов. Наконец, для того, чтобы обращаться к удаленным файлам, программы должны быть перекомпилированы с использованием новых библиотек; старые программы и поставленные объектные модули без этого работать с удаленными файлами не смогут. Все эти недостатки отсутствуют в системе, описываемой в следующем разделе.
13.3 "ПРОЗРАЧНЫЕ" РАСПРЕДЕЛЕННЫЕ ФАЙЛОВЫЕ СИСТЕМЫ
Термин "прозрачное распределение" означает, что пользователи, работающие на одной машине, могут обращаться к файлам, находящимся на другой машине, не осознавая того, что тем самым они пересекают машинные границы, подобно тому, как на своей машине они при переходе от одной файловой системе к другой пересекают точки монтирования. Имена, по которым процессы обращаются к файлам, находящимся на удаленных машинах, похожи на имена локальных файлов: отличительные символы в них отсутствуют. В конфигурации, показанной на Рисунке 13.10, каталог "/usr/src", принадлежащий машине B, "вмонтирован" в каталог "/usr/src", принадлежащий машине A. Такая конфигурация представляется удобной в том случае, если в разных системах предполагается использовать один и тот же исходный код системы, традиционно находящийся в каталоге "/usr/src". Пользователи, работающие на машине A, могут обращаться к файлам, расположенным на машине B, используя привычный синтаксис написания имен файлов (например: "/usr/src/cmd/login.c"), и ядро уже само решает вопрос, является файл удаленным или же локальным. Пользователи, работающие на машине B, имеют доступ к своим локальным файлам (не подозревая о том, что к этим же файлам могут обращаться и пользователи машины A), но, в свою очередь, не имеют доступа к файлам, находящимся на машине A. Конечно, возможны и другие варианты, в частности, такие, в которых все удаленные системы монтируются в корне локальной системы, благодаря чему пользователи получают доступ ко всем файлам во всех системах.

Рисунок 13.10. Файловые системы после удаленного монтирования
Наличие сходства между монтированием локальных файловых систем и открытием доступа к удаленным файловым системам послужило поводом для адаптации функции mount применительно к удаленным файловым системам. В данном случае ядро получает в свое распоряжение таблицу монтирования расширенного формата. Выполняя функцию mount, ядро организует сетевую связь с удаленной машиной и сохраняет в таблице монтирования информацию, характеризующую данную связь.
Интересная проблема связана с именами путей, включающих "..". Если процесс делает текущим каталог из удаленной файловой системы, последующее использование в имени символов ".." скорее вернет процесс в локальную файловую систему, чем позволит обращаться к файлам, расположенным выше текущего каталога. Возвращаясь вновь к Рисунку 13.10, отметим, что когда процесс, принадлежащий машине A, выбрав предварительно в качестве текущего каталог "/usr/src/cmd", расположенный в удаленной файловой системе, исполнит команду
Читать дальшеИнтервал:
Закладка: