Морис Бах - Архитектура операционной системы UNIX
- Название:Архитектура операционной системы UNIX
- Автор:
- Жанр:
- Издательство:Издано корпорацией Prentice-Hall.
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Морис Бах - Архитектура операционной системы UNIX краткое содержание
Архитектура операционной системы UNIX - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рассмотрим в качестве примера программу, приведенную на Рисунке 8.12, измеряющую продолжительность выполнения функций f и g. Сначала процесс, используя системную функцию signal, делает указание при получении сигнала о прерывании вызывать функцию theend, затем он вычисляет диапазон адресов программы, в пределах которых будет производиться измерение продолжительности (начиная с адреса функции main и кончая адресом функции theend), и, наконец, запускает функцию profil, сообщая ядру о том, что он собирается начать измерение. В результате выполнения программы в течение 10 секунд на несильно загруженной машине AT&T 3B20 были получены данные, представленные на Рисунке 8.13. Адрес функции f превышает адрес начала профилирования на 204 байта; поскольку текст функции f имеет размер 12 байт, а размер целого числа в машине AT&T 3B20 равен 4 байтам, адреса функции f отображаются на элементы массива buf с номерами 51, 52 и 53. По такому же принципу адреса функции g отображаются на элементы buf c номерами 54, 55 и 56. Элементы buf с номерами 46, 48 и 49 предназначены для адресов, принадлежащих циклу функции main. В обычном случае диапазон адресов, в пределах которого выполняется измерение параметров, определяется в результате обращения к таблице идентификаторов для данной программы, где указываются адреса программных секций. Пользователи сторонятся функции profil из-за того, что она кажется им слишком сложной; вместо нее они используют при компиляции программ на языке Си параметр, сообщающий компилятору о необходимости сгенерировать код, следящий за ходом выполнения процессов.
#include ‹signal.h›
int buffer[4096];
main() {
int offset, endof, scale, eff, gee, text;
extern theend(), f(), g();
signal(SIGINT, theend);
endof = (int) theend;
offset = (int) main; /* вычисляется количество слов в тексте программы */
text = (endof - offset + sizeof(int) - 1) / sizeof(int);
scale = Oxffff;
printf("смещение до начала %d до конца %d длина текста %d\n", offset, endof, text);
eff = (int) f;
gee = (int) g;
printf("f %d g %d fdiff %d gdiff %d\n", eff ,gee, eff - offset, gee - offset);
profil(buffer, sizeof(int) * text, offset, scale);
for (;;) {
f(); g();
}
}
f() {}
g() {}
theend() {
int i;
for (i = 0; i ‹ 4096; i++) if (buffer[i]) printf("buf[%d] = %d\n", i, buffer[i]);
exit();
}
Рисунок 8.12. Программа, использующая системную функцию profil
смещение до начала 212 до конца 440 длина текста 57
f 416 g 428 fdiff 204 gdiff 216
buf[46] = 50
buf[48] = 8585216
buf[49] = 151
buf[51] = 12189799
buf[53] = 65
buf[54] = 10682455
buf[56] = 67
Рисунок 8.13. Пример результатов выполнения программы, использующей системную функцию profil
8.3.4 Учет и статистика
В момент поступления прерывания по таймеру система может выполняться в режиме ядра или задачи, а также находиться в состоянии простоя (бездействия). Состояние простоя означает, что все процессы приостановлены в ожидании наступления события. Для каждого состояния процессора ядро имеет внутренние счетчики, устанавливаемые при каждом прерывании по таймеру. Позже пользовательские процессы могут проанализировать накопленную ядром статистическую информацию.
В пространстве каждого процесса имеются два поля для записи продолжительности времени, проведенного процессом в режиме ядра и задачи. В ходе обработки прерываний по таймеру ядро корректирует значение поля, соответствующего текущему режиму выполнения процесса. Процессы-родители собирают статистику о своих потомках при выполнении функции wait, беря за основу информацию, поступающую от завершающих свое выполнение потомков.
В пространстве каждого процесса имеется также одно поле для ведения учета использования памяти. В ходе обработки прерывания по таймеру ядро вычисляет общий объем памяти, занимаемый текущим процессом, исходя из размера частных областей процесса и его долевого участия в использовании разделяемых областей памяти. Если, например, процесс использует области данных и стека размером 25 и 40 Кбайт, соответственно, и разделяет с четырьмя другими процессами одну область команд размером 50 Кбайт, ядро назначает процессу 75 Кбайт памяти (50К/5 + 25К + 40К). В системе с замещением страниц ядро вычисляет объем используемой памяти путем подсчета числа используемых в каждой области страниц. Таким образом, если прерываемый процесс имеет две частные области и еще одну область разделяет с другим процессом, ядро назначает ему столько страниц памяти, сколько содержится в этих частных областях, плюс половину страниц, принадлежащих разделяемой области. Вся указанная информация отражается в учетной записи при завершении процесса и может быть использована для расчетов с заказчиками машинного времени.
8.3.5 Поддержание времени в системе
Ядро увеличивает показание системных часов при каждом прерывании по таймеру, измеряя время в таймерных тиках от момента загрузки системы. Это значение возвращается процессу через системную функцию time и дает возможность определять общее время выполнения процесса. Время первоначального запуска процесса сохраняется ядром в адресном пространстве процесса при исполнении системной функции fork, в момент завершения процесса это значение вычитается из текущего времени, результат вычитания и составляет реальное время выполнения процесса. В другой переменной таймера, устанавливаемой с помощью системной функции stime и корректируемой раз в секунду, хранится календарное время.
8.4 ВЫВОДЫ
В настоящей главе был описан основной алгоритм диспетчеризации процессов в системе UNIX. С каждым процессом в системе связывается приоритет планирования, значение которого появляется в момент перехода процесса в состояние приостанова и периодически корректируется программой обработки прерываний по таймеру. Приоритет, присваиваемый процессу в момент перехода в состояние приостанова, имеет значение, зависящее от того, какой из алгоритмов ядра исполнялся процессом в этот момент. Значение приоритета, присваиваемое процессу во время выполнения программой обработки прерываний по таймеру (или в тот момент, когда процесс возвращается из режима ядра в режим задачи), зависит от того, сколько времени процесс занимал ЦП: процесс получает низкий приоритет, если он обращался к ЦП, и высокий — в противном случае. Системная функция nice дает процессу возможность влиять на собственный приоритет путем добавления параметра, участвующего в пересчете приоритета. В главе были также рассмотрены системные функции, связанные с временем выполнения системы и протекающих в ней процессов: с установкой и получением системного времени, получением времени выполнения процессов и установкой сигналов "будильника". Кроме того, описаны функции программы обработки прерываний по таймеру, которая следит за временем в системе, управляет таблицей ответных сигналов, собирает статистику, а также подготавливает запуск планировщика процессов, программы подкачки и "сборщика" страниц. Программа подкачки и "сборщик" страниц являются объектами рассмотрения в следующей главе.
Читать дальшеИнтервал:
Закладка: