Bert Hubert - Linux Advanced Routing & Traffic Control HOWTO
- Название:Linux Advanced Routing & Traffic Control HOWTO
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Bert Hubert - Linux Advanced Routing & Traffic Control HOWTO краткое содержание
Оригинальную версию документа вы найдете по адресу http://lartc.org/.
Практическое руководство по применению iproute2 (и в меньшей степени netfilter) для управления трафиком.
Linux Advanced Routing & Traffic Control HOWTO - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
skb->ihp->tos
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >
| | ^
| -- Если объявлена инструкция set_tc_index, | | <-----Значение поля
| то значение DS переписывается в skb->tc_index | |O DS может измениться
| A| |R
+-|-+ +------+ +---+-+ внутренняя +-+ +---N|-----|----+
| | | | tc |--->| | |--> . . . -->| | | D| | |
| | |----->|index |--->| | | Qdisc | |---->| v | |
| | | |filter|--->| | | +---------------+ | ---->(mask,value) |
-->| O | +------+ +-|-+--------------^----+ / | (. , .) |
| | | ^ | | | | (. , .) |
| | +----------|---------|----------------|-------|--+ (. , .) |
| | sch_dsmark | | | | |
+-|------------|---------|----------------|-------|------------------+
| | | <- tc_index -> | |
| |(read) | может | | <--------------Индекс в таблице
| | | измениться | | (mask,value)
v | v v |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ->
skb->tc_index
Как установить метку? Просто измените mask и value класса. См. следующий код:
tc class change dev eth0 classid 1:1 dsmark mask 0x3 value 0xb8
Это изменение пары (mask,value) в хеш-таблице, пометит пакеты, принадлежащие классу 1:1.
Теперь перейдем к описанию фильтра TC_INDEX. Кроме всего прочего, фильтр TC_INDEX может использоваться и в других конфигурациях, а не только в тех, которые включают DS услуги.
14.3.6. Фильтр TC_INDEX.
Базовый синтаксис команды, объявляющей фильтр TC_INDEX:
… tcindex [ hash SIZE ] [ mask MASK ] [ shift SHIFT ]
[ pass_on | fall_through ]
[ classid CLASSID ] [ police POLICE_SPEC ]
Ниже приводится пример, который описывает работу TC_INDEX (обратите внимание на места, выделенные жирным шрифтом:
tc qdisc add dev eth0 handle 1:0 root dsmark indices 64 set_tc_index
tc filter add dev eth0 parent 1:0 protocol ip prio 1 tcindex mask 0xfc shift 2
tc qdisc add dev eth0 parent 1:0 handle 2:0 cbq bandwidth 10Mbit cell 8 avpkt 1000 mpu 64
# EF traffic class
tc class add dev eth0 parent 2:0 classid 2:1 cbq bandwidth 10Mbit rate 1500Kbit avpkt 1000 prio 1 bounded isolated allot 1514 weight 1 maxburst 10
# Packet fifo qdisc for EF traffic
tc qdisc add dev eth0 parent 2:1 pfifo limit 5
tc filter add dev eth0 parent 2:0 protocol ip prio 1 handle 0x2etcindex classid 2:1 pass_on
(Это неполный код, я просто привел часть примера EFCBQ, включенного в состав дистрибутива iproute2).
Будем исходить из предположения, что мы получаем пакет, помеченный как EF. Если вы прочитаете RFC2598, то увидите, что рекомендуемое значение DSCP для EF трафика — 101110. Это означает, что в поле DS будет записано 10111000 (не забывайте, что младшие биты в поле TOS не используются в DS), или 0xb8, в шестнадцатиричном представлении.
TC INDEX
FILTER
+---+ +-------+ +---+-+ +------+ +-+ +-------+
| | | | | | | |FILTER| +-+ +-+ | | | |
| |----->| MASK | -> | | | -> |HANDLE|->| | | | -> | | -> | |
| | . | =0xfc | | | | |0x2E | | +----+ | | | | |
| | . | | | | | +------+ +--------+ | | | |
| | . | | | | | | | | |
-->| | . | SHIFT | | | | | | | |-->
| | . | =2 | | | +----------------------------+ | | |
| | | | | | CBQ 2:0 | | |
| | +-------+ +---+--------------------------------+ | |
| | | |
| +-------------------------------------------------------------+ |
| DSMARK 1:0 |
+-------------------------------------------------------------------------+
Полученный пакет имеет значение 0xb8 в поле DS. Дисциплина с идентификатором 1:0 считывает это значение и помещает его в skb->tc_index. На следующем шаге (вторая строка в примере), описанный фильтр выполняет следующие действия:
Value1 = skb->tc_index & MASK
Key = Value1 >> SHIFT
В нашем примере MASK=0xFC и SHIFT=2.
Value1 = 10111000 & 11111100 = 10111000
Key = 10111000 >> 2 = 00101110 -> 0x2E (в шестнадцатиричном виде)
Возвращаемое значение будет соответствовать фильтру внутренней qdisc (в примере, идентификатор 2:0). Если фильтр с заданным идентификатором найден, то условия фильтра будут проверены (в случае, если фильтр включает в себя эти условия) и будет возвращен classid (в нашем примере classid 2:1), который далее будет записан в skb->tc_index. Если фильтр не будет найден, то результат будет зависеть от объявления флага fall_through. Если объявление fall_through присутствует, то его значение будет воспринято как classid. В противном случае продолжится просмотр остальных фильтров. Будьте предельно внимательны, при использовании флага fall_through — его использование рекомендуется только в том случае, когда значение skb->tc_index и идентификаторы классов ссвязаны простыми (в смысле несложными) отношениями.
И последние два параметра, которые мы опишем, это hash и pass_on . Первый из них определяет размер хеш-таблицы. Pass_on — означает, что если не будет найден classid, равный результату этого фильтра, то необходимо попробовать применить следующий фильтр. Действие по-умолчанию — fall_through (см. следующую таблицу).
В заключение посмотрим — какие значения параметров TCINDEX допустимы:
TC Name | Value | Default |
---|---|---|
Hash | 1...0x10000 | Зависит от реализации |
Mask | 0...0xffff | 0xffff |
Shift | 0...15 | 0 |
Fall through / Pass_on | Flag | Fall_through |
Classid | Major:minor | None |
Police | ..... | None |
Это очень мощный тип фильтров. Кроме того, он может использоваться не только в конфигурации DiffServ, но и как любой другой тип фильтров.
Я настоятельно рекомендую вам внимательно просмотреть все примеры DiffServ, включаемые в дистрибутив iproute2. Со своей стороны я обещаю, что дополню этот текст, как только найду время. Все, что я здесь описал — есть результат длительных экспериментов. Я буду весьма признателен, если вы сообщите мне об обнаруженных ошибках.
14.4. Ingress qdisc.
До сих пор, все дисциплины, которые обсуждались, были исходящими (egress) дисциплинами. Однако, каждый из интерфейсов может иметь и входящие (ingress) дисциплины. Они не применяются к исходящему трафику, но они позволяют устанавливать tc-фильтры для входящих пакетов, вне зависимости от того, предназначены ли они для данного хоста или должны быть перенаправлены дальше.
Поскольку tc-фильтры имеют полную реализацию Token Bucket Filter, то они так же могут ограничивать входящий трафик на основе "функций оценки" (estimators). Это позволяет выстраивать эффективную политику обслуживания входящего трафика, до того как он попадет "в руки" стека протоколов IP.
14.4.1. Параметры и порядок использования.
Входные дисциплины, сами по себе не требуют каких-либо параметров. Пример создания входной дисциплины:
# tc qdisc add dev eth0 ingress
Кроме входящей дисциплины вы можете добавлять к устройству и исходящие дисциплины.
Примеры использования входящей дисциплины вы найдете в главе Решебник.
14.5. Random Early Detection (RED)
Этот раздел служит в качестве введения в организацию очередей в магистральных сетях, которые зачастую имеют полосу пропускания более 100 мегабит, что требует иного подхода чем в случае с домашним ADSL-модемом.
Нередко на маршрутизаторах в Интернет возникает так называемая проблема tail drops – отсечения конца очереди. Когда очередь полна, ни один вновь поступивший пакет туда уже не помещается, а потому отбрасывается. Такое управление очередью приводит к повторной синхронизации параметров соединения. После синхронизации TCP сразу посылает столько пакетов, сколько допускает размер окна подтверждения. Подобный всплеск нагрузки опять приводит к отсечению конца очереди, что опять порождает необходимость повторной синхронизации… Такое хождение по кругу может продолжаться довольно долго.
Читать дальшеИнтервал:
Закладка: