Нейл Мэтью - Основы программирования в Linux
- Название:Основы программирования в Linux
- Автор:
- Жанр:
- Издательство:«БХВ-Петербург»
- Год:2009
- Город:Санкт-Петербург
- ISBN:978-5-9775-0289-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нейл Мэтью - Основы программирования в Linux краткое содержание
В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стандартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым.
Для начинающих Linux-программистов
Основы программирования в Linux - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таблица 11.9
Имя сигнала | Описание |
---|---|
SIGSTOP |
Останавливает выполнение (не может быть захвачен или проигнорирован) |
SIGTSTP |
Сигнал останова терминала часто возбуждается нажатием комбинации клавиш + |
SIGTTIN , SIGTTOU |
Применяются командной оболочкой для обозначения того, что фоновые задания остановлены, т.к. им необходимо прочесть данные с терминала или выполнить вывод |
Сигнал SIGCONT
возобновляет остановленный процесс и игнорируется при получении неостановленным процессом. Сигнал SIGCHLD
по умолчанию игнорируется (табл. 11.10).
Таблица 11.10
Имя сигнала | Описание |
---|---|
SIGCONT |
Продолжает выполнение, если процесс остановлен |
SIGCHLD |
Возбуждается, когда останавливается или завершается дочерний процесс |
Резюме
В этой главе вы убедились, что процессы — это основной компонент операционной системы Linux. Вы узнали, как они могут запускаться, завершаться и просматриваться и как вы можете применять их для решения задач программирования. Вы также познакомились с сигналами, которые могут использоваться для управления действиями выполняющихся программ. Вы убедились, что все процессы Linux, вплоть до init
включительно, используют одни и те же системные вызовы, доступные любому программисту.
Глава 12
Потоки POSIX
В главе 11 вы видели, как обрабатываются процессы в ОС Linux (и конечно в UNIX). Эти средства обработки множественных процессов долгое время были характерной чертой UNIX-подобных операционных систем. Порой бывает полезно заставить одну программу делать два дела одновременно или, по крайней мере, создать впечатление такой работы. А может быть, вы хотите, чтобы несколько событий произошло одновременно и все они были тесно связаны, но при этом накладные расходы на создание нового процесса с помощью функции fork
считаете слишком большими. В таких ситуациях можно применить потоки, позволяющие одному процессу стать многозадачным.
В этой главе мы рассмотрим следующие темы:
□ создание новых потоков в процессе;
□ синхронизацию доступа к данным потоков одного процесса;
□ изменение атрибутов потока;
□ управление в одном и том же процессе одним потоком из другого.
Что такое поток?
Множественные нити исполнения в одной программе называют потоками. Более точно поток — это последовательность или цикл управления в процессе. Все программы, которые вы видели до настоящего момента, выполняли единственный процесс, хотя, как и многие другие операционные системы, ОС Linux вполне способна выполнять множественные процессы одновременно. В действительности у всех процессов есть как минимум один поток исполнения. У всех процессов, с которыми вы пока познакомились в этой книге, был только один поток исполнения.
Важно понять разницу между системным вызовом fork и созданием новых потоков. Когда процесс выполняет системный вызов fork, создается новая копия процесса с ее собственными переменными и собственным PID. Время выполнения этого нового процесса планируется независимо и выполняется он (в основном) независимо от создавшего его процесса. Когда мы создаем в процессе новый поток, этот поток исполнения в противоположность новому процессу получает собственный стек (и, следовательно, локальные переменные), но использует совместно с создавшим его процессом глобальные переменные, файловые дескрипторы, обработчики сигналов и положение текущего каталога.
Идея потоков была популярна какое-то время, но пока Комитет IEEE POSIX не опубликовал некоторые стандарты, потоки не были широко распространены в UNIX-подобных операционных системах и существовавшие реализации разных поставщиков сильно отличались друг от друга. С появлением стандарта POSIX 1003.1c все изменилось; потоки теперь не только лучше стандартизованы, но также реализованы в большинстве дистрибутивов Linux. В наше время многоядерные процессоры стали обычными даже в настольных компьютерах, так что у большинства машин есть низкоуровневая аппаратная поддержка, позволяющая им выполнять несколько потоков одновременно. Раньше при наличии одноядерных ЦПУ одновременное исполнение потоков было лишь изобретательной, хотя и очень эффективной иллюзией.
Впервые ОС Linux обзавелась поддержкой потоков около 1996 г. благодаря появлению библиотеки, которую часто называют "LinuxThreads" (потоки Linux). Она почти соответствует стандарту POSIX (на самом деле в большинстве случаев отличия не заметны) и стала важным шагом на пути первого применения потоков программистами Linux. Но между реализацией потоков в Linux и стандартом POSIX есть слабые расхождения, в основном касающиеся обработки сигналов. Ограничения накладываются не столько реализацией библиотеки, сколько низкоуровневой поддержкой ядра Linux.
Разные проекты рассматривали возможности улучшения поддержки потоков в Linux, касающиеся не только устранения слабых расхождений со стандартом POSIX, но и повышения производительности и удаления любых ненужных ограничений. Основная работа была направлена на поиск способов отображения потоков пользовательского уровня на потоки уровня ядра системы. Двумя главными проектами были New Generation POSIX Threads (NGPT, потоки POSIX нового поколения) и Native POSIX Thread Library (NPTL, библиотека истинных потоков POSIX). Оба проекта должны были внести изменения в ядро Linux, обеспечивающие поддержку новых библиотек, и оба предлагали существенное повышение производительности по сравнению с прежней реализацией потоков в Linux.
В 2002 г. команда NGPT объявила, что не хочет разделять сообщество и приостанавливает разработку новых средств для проекта NGPT, но продолжит работу по улучшению поддержки потоков в ОС Linux, присоединив свои усилия к стараниям NPTL. Библиотека NPTL стала новым стандартом для потоков в Linux, выпустив первую основную версию в дистрибутиве Red Hat Linux 9. Вы можете найти интересную основополагающую информацию о NPTL в статье "The Native POSIX Thread Library for Linux" ("Библиотека истинных потоков POSIX для Linux") Ульриха Дреппера (Ulrich Drepper) и Инго Мольнара (Ingo Molnar), которая во время написания книги была доступна в Интернете по адресу http://people.redhat.com/drepper/nptl-design.pdf.
Большая часть программного кода из этой главы будет работать с любой библиотекой потоков, поскольку основана на стандарте POSIX, общем для всех библиотек потоков. Но вы сможете заметить небольшие отличия, если пользуетесь старой версией дистрибутива Linux, особенно когда примените команду ps
для просмотра примеров во время их выполнения.
Интервал:
Закладка: