Нейл Мэтью - Основы программирования в Linux
- Название:Основы программирования в Linux
- Автор:
- Жанр:
- Издательство:«БХВ-Петербург»
- Год:2009
- Город:Санкт-Петербург
- ISBN:978-5-9775-0289-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нейл Мэтью - Основы программирования в Linux краткое содержание
В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стандартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым.
Для начинающих Linux-программистов
Основы программирования в Linux - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Когда вы создаете файл с помощью системного вызова open или creat, параметр mode сравнивается с текущим значением переменной umask
. Любой бит, установленный в параметре mode
и одновременно в переменной umask
, удаляется. В результате пользователи могут настроить свое окружение, например, потребовав не создавать никаких файлов с правом на запись для остальных, даже если программа, создающая файл, требует предоставить такое право. Это не мешает программе или пользователю впоследствии применить команду chmod
(или системный вызов chmod
в программе), чтобы добавить право на запись для остальных, но поможет защитить пользователей, избавив их от необходимости проверять и задавать права доступа для всех новых файлов.
Системный вызов close
применяется для разрыва связи файлового дескриптора fildes
с его файлом. Дескриптор файла после этого может использоваться повторно. Вызов возвращает 0 в случае успешного завершения и -1 при возникновении ошибки.
#include
int close (int fildes);
В некоторых случаях проверка возвращаемого значения вызова close
бывает очень важна. Некоторые файловые системы, особенно с сетевой структурой, могут не сообщать об ошибке записи в файл до тех пор, пока файл не будет закрыт, потому что при выполнении записи могло отсутствовать подтверждение действительной записи данных.
Системный вызов ioctl
напоминает набор всякой всячины. Он предоставляет интерфейс для управления поведением устройств и их дескрипторов и настройки базовых сервисов. У терминалов, дескрипторов файлов, сокетов и даже ленточных накопителей могут быть определенные для них вызовы ioctl
и вам необходимо обращаться за подробной информацией к страницам справочного руководства, относящимся к конкретным устройствам. В стандарте POSIX определены только вызовы ioctl
для потоков, которые не обсуждаются в этой книге. Далее приведена синтаксическая запись вызова.
#include
int ioctl(int fildes, int cmd, ...)
Вызов ioctl
выполняет операцию, указанную в аргументе cmd
, над объектом, заданным в дескрипторе fildes
. У вызова может быть необязательный третий аргумент, зависящий от функций, поддерживаемых конкретным устройством.
Например, следующий вызов ioctl
в ОС Linux включает световые индикаторы клавиатуры (LEDs).
ioctl(tty_fd, KDSETLED, LED_NUM|LED_CAP|LED_SCR);
Выполните упражнения 3.1 и 3.2.
Теперь вы знаете достаточно о системных вызовах open
, read
и write
, чтобы написать простенькую программу copy_system.c для посимвольного копирования одного файла в другой.
В данной главе мы проделаем это несколькими способами для того, чтобы сравнить эффективность разных методов. Для краткости предположим, что входной файл существует, а выходной — нет, и что все операции чтения и записи завершаются успешно. Конечно, в реальных программах вам придется убедиться в том, что эти предположения верны!
1. Сначала вам нужно создать тестовый входной файл размером, скажем, 1 Мбайт и именем file.in.
2. Далее откомпилируйте программу copy_system.c.
#include
#include
#include
#include
int main() {
char c;
int in, out;
in = open("file.in", O_RDONLY);
put = open("file.out", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while(read(in, &c, 1) == 1) write(out, &c, 1);
exit(0);
}
Имейте в виду, что строка #include
должна быть первой, поскольку она определяет флаги, касающиеся соответствия стандарту POSIX и способные повлиять на другие включенные в #include
файлы.
3. Выполнение программы даст результат, похожий на следующий:
$ TIMEPORMAT="" time ./copy_system
4.67user 146.90system 2:32.57elapsed 99%CPU
...
$ ls -ls file.in file.out
1029 -rw-r--r-- 1 neil users 1048576 Sep 17 10:46 file.in
1029 -rw------- 1 neil users 1048576 Sep 17 10:51 file.out
Как это работает
Вы используете команду time
для определения времени выполнения программы. В ОС Linux переменная TIMEFORMAT
применяется для переопределения принятого по умолчанию в стандарте POSIX формата вывода времени, в который не включено время использования ЦПУ. Как видите, что в этой очень старой системе входной файл file.in размером 1 Мбайт был успешно скопирован в файл file.out, созданный с правами на чтение/запись только для владельца. Копирование заняло две с половиной минуты и затратило фактически все доступное время ЦПУ. Программа так медлительна потому, что вынуждена была выполнить более двух миллионов системных вызовов.
В последние годы ОС Linux продемонстрировала огромные успехи в повышении производительности системных вызовов и файловой системы. Для сравнения аналогичный тест с применением ядра 2.6 занял чуть менее 14 секунд:
$ TIMEFORMAT="" time ./copy_system
2.08user 10.59system 0:13.74elapsed 92%CPU
...
Вы можете добиться лучших результатов, копируя блоки большего размера. Взгляните на модифицированную программу copy_block.c, которая копирует файл блоками в 1 Кбайт и снова использует системные вызовы.
#include
#include
#include
#include
int main() {
char block[1024];
int in, out;
int nread;
in = open("file.in", O_RDONLY);
out = open("file.out", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while((nread = read(in, block, sizeof(block))) > 0)
write(out, block, nread);
exit(0);
}
Теперь испытайте программу, но сначала удалите старый выходной файл.
$ rm file.out
$ TIMEFORMAT="" time ./copy_block
0.00user 0.02system 0:00.04elapsed 78%CPU
...
Как это работает
Теперь программа выполняется только сотые доли секунды, поскольку ей требуется около 2000 системных вызовов. Конечно, это время очень зависит от системы, но оно показывает, что системные вызовы сопряжены с поддающимися измерению издержками, поэтому их применение стоит оптимизировать.
Другие системные вызовы для управления файлами
Существует ряд других системных вызовов, оперирующих низкоуровневыми дескрипторами файлов. Они позволяют программе контролировать использование файла, возвращая информацию о его состоянии,
Системный вызов lseek
задает указатель текущей позиции чтения/записи дескриптора файла, т.е. вы можете применять его для установки в файле места, с которого будет происходить следующее считывание или на которое будет производиться следующая запись. Вы можете задать указатель на абсолютную позицию файла или позицию, относительно текущего положения указателя или конца файла.
Интервал:
Закладка: