Нейл Мэтью - Основы программирования в Linux
- Название:Основы программирования в Linux
- Автор:
- Жанр:
- Издательство:«БХВ-Петербург»
- Год:2009
- Город:Санкт-Петербург
- ISBN:978-5-9775-0289-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нейл Мэтью - Основы программирования в Linux краткое содержание
В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стандартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым.
Для начинающих Linux-программистов
Основы программирования в Linux - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как это работает
Программа инициализирует средство ведения системного журнала, названное logmask, и запрашивает включение идентификатора процесса в регистрируемые сообщения. Информирующее сообщение записывается в файл /var/log/messages, а отладочное сообщение — в файл /var/log/debug. Второе отладочное сообщение не появляется, потому что вы вызвали функцию setlogmask
с игнорированием всех сообщений с приоритетом ниже LOG_NOTICE
. (Учтите, что этот метод не работает в ранних вариантах ядра Linux.)
Если в установленную у вас систему не включена регистрация отладочных сообщений или она настроена иначе, отладочные сообщения могут не появляться. Для разблокирования всех отладочных сообщений и для получения подробностей настройки см. системную документацию, посвященную функции syslog
или syslog-ng
.
Программа logmask.c также использует функцию getpid
, которая, наряду с тесно связанной с ней функцией getppid
, определена следующим образом:
#include
#include
pid_t getpid(void);pid_t getppid(void);
Функции возвращают идентификаторы вызвавшего и родительского процессов. Дополнительную информацию об идентификаторах процессов (PID) см. в главе 11.
Ресурсы и ограничения
Программы, выполняющиеся в системе Linux, зависят от ограниченности ресурсов. Это могут быть физические ограничения, накладываемые оборудованием (например, памятью), ограничения, связанные с системной политикой (например, разрешенное время процессора) или ограничения реализации (такие как размер типа integer
или максимально допустимое количество символов в имени файла). В спецификацию UNIX включены некоторые из этих ограничений, которые может определять приложение. Дальнейшее обсуждение ограничений и последствия их нарушений см. в главе 7.
В заголовочном файле limits.h определены многие именованные константы, представляющие ограничения, налагаемые операционной системой (табл. 4.8).
Таблица 4.8
Ограничительная константа | Назначение |
---|---|
NAME_MAX |
Максимальное число символов в имени файла |
CHAR_BIT |
Количество разрядов в значении типа char |
CHAR_MAX |
Максимальное значение типа char |
INT_MAX |
Максимальное значение типа int |
Существует множество других ограничений, полезных приложению, поэтому следует ознакомиться с заголовочными файлами установленной у вас версии системы.
Имейте в виду, что константа NAME_MAX
зависит от файловой системы. Для разработки легко переносимого кода следует применять функцию pathconf. Дополнительную информацию о ней см. на страницах интерактивного справочного руководства.
В заголовочном файле sys/resource.h представлены определения операций над ресурсами. К ним относятся функции для считывания и установки предельных значений для разрешенного размера программы, приоритета выполнения и файловых ресурсов.
#include
int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int priority);
int getrlimit(int resource, struct rlimit *r_limit);
int setrlimit(int resource, const struct rlimit *r_limit);
int getrusage(int who, struct rusage *r_usage);
Здесь id_t
— это целочисленный тип, применяемый для идентификаторов пользователя и группы. Структура rusage
, указанная в файле sys/resource.h, используется для определения времени центрального процессора (ЦП), затраченного текущей программой. Она должна содержать, как минимум, два элемента (табл. 4.9).
Таблица 4.9
Элемент структуры rusage |
Описание |
---|---|
struct timeval ru_utime |
Время, использованное пользователем |
struct timeval ru_stime |
Время, использованное системой |
Структура timeval
определена в файле sys/time.h и содержит поля tv_sec
и tv_usec
, представляющие секунды и микросекунды соответственно.
Время ЦП, потребляемое программой, делится на время пользователя (время, затраченное самой программой на выполнение собственных инструкций) и системное время (время ЦП, потребляемое операционной системой в интересах программы, т.е. время, затраченное на системные вызовы, выполняющие ввод и вывод или другие системные функции).
Функция getrusage
записывает данные о времени ЦП в структуру rusage
, на которую указывает параметр r_usage
. Параметр who
может быть задан одной из констант, приведенных в табл. 4.10.
Таблица 4.10
Константа who |
Описание |
---|---|
RUSAGE_SELF |
Возвращает данные о потреблении только для текущей программы |
RUSAGE_CHILDREN |
Возвращает данные о потреблении и для дочерних процессов |
Мы будем обсуждать дочерние процессы и приоритеты задач в главе 11, но для полноты картины мы здесь упоминаем об их причастности к потреблению системных ресурсов. Пока достаточно сказать, что у каждой выполняющейся программы есть ассоциированный с ней приоритет, и чем выше приоритет программы, тем больше ей выделяется доступного времени ЦП.
Обычные пользователи могут только снижать приоритеты своих программ, а не повышать их.
Приложения могут определять и изменять свои (и чужие) приоритеты с помощью функций getpriority
и setpriority
. Процесс, исследуемый или изменяемый с помощью этих функций, может быть задан идентификатором процесса, группы или пользователя. Параметр which
описывает, как следует интерпретировать параметр who
(табл. 4.11).
Таблица 4.11
Параметр which |
Описание |
---|---|
PRIO_PROCESS |
who — идентификатор процесса |
PRIO_PGRP |
who — идентификатор группы |
PRIO_USER |
who — идентификатор пользователя |
Итак, для определения приоритета текущего процесса вы можете выполнить следующий вызов:
priority = getpriority(PRIO_PROCESS, getpid());
Функция setpriority
позволяет задать новый приоритет, если это возможно.
По умолчанию приоритет равен 0. Положительные значения приоритета применяются для фоновых задач, которые выполняются, только когда нет задачи с более высоким приоритетом, готовой к выполнению. Отрицательные значения приоритета заставляют программу работать интенсивнее, выделяя большие доли доступного времени ЦП. Диапазон допустимых приоритетов — от -20 до +20. Часто это приводит к путанице, поскольку, чем выше числовое значение, тем ниже приоритет выполнения.
Функция getpriority
возвращает установленный приоритет в случае успешного завершения или -1 с переменной errno
, указывающей на ошибку. Поскольку значение -1 само по себе обозначает допустимый приоритет, переменную errno
перед вызовом функции getpriority
следует приравнять нулю и при возврате из функции проверить, осталась ли она нулевой. Функция setpriority
возвращает 0 в случае успешного завершения и -1 в противном случае.
Интервал:
Закладка: