Сидни Фейт - TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
- Название:TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
- Автор:
- Жанр:
- Издательство:Лори
- Год:2000
- Город:Москва
- ISBN:5-85582-072-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сидни Фейт - TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) краткое содержание
Второе издание популярного справочника полностью переработано и расширено с целью предоставить читателю наиболее полное описание средств разработки, конфигурирования, использования и обслуживания сетей TCP/IP и соответствующих служб.
Книга написана увлекательно и доступно. Она содержит дополнительные материалы о нескольких протоколах Интернета, используемых серверами и браузерами WWW, а также рассматривает все последние изменения в этой области. В книгу включены главы о новом стандарте безопасности IP и протоколе IP следующего поколения, известном как IPng или IPv6. Рисунки и таблицы наглядно показывают влияние средств безопасности IP и IPng на существующие сетевые среды.
Издание содержит следующие дополнительные разделы:
• Безопасность IP и IPv6
• Описание средств WWW, новостей Интернета и приложений для работы с gopher
• Подробное описание серверов имен доменов (DNS), маски подсети и бесклассовой маршрутизации в Интернете
• Таблицы и протоколы маршрутизации
• Руководство по реализации средств безопасности для каждого из протоколов и приложений
• Примеры диалогов с новыми графическими инструментами
Новое издание бестселлера по TCP/IP станет незаменимым помощником для разработчиков сетей и приложений, для сетевых администраторов и конечных пользователей.
TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вопреки недостаткам многоадресных хостов, включение в адрес идентификаторов сетей и подсетей существенно улучшает эффективность маршрутизаторов и позволяет легко расширять сети интернета, работающие по протоколу TCP/IP.
5.22 Конфигурирование адресов и масок подсети
Как мы уже знаем, пользовательский интерфейс конфигурирования TCP/IP различается на разных хостах. В системе tigger команда ifconfig используется для установки или просмотра связанных с интерфейсом параметров. Ниже показаны параметры Ethernet интерфейса 0 (le0):
> ifconfig lе0
le0: flags = 63
inet 128.121.50.145 netmask ffffff00 broadcast 128.121.50.255
IP-адрес интерфейса — 128.121.50.145. Маска подсети выведена в шестнадцатеричном формате (ffffff00). Адресом широковещательной рассылки в этой подсети является 128.121.50.255.
Эта же сведения были введены через меню Chameleon . Например, раскрывающееся меню служит для конфигурирования IP-адреса (см. рис. 5.13).

Рис. 5.13.Конфигурирование IP-адреса через меню
5.23 Взаимосвязь имен и адресов
Посмотрев на имя системы ( fermat.math.yale.edu ) и ее IP-адрес в нотации с точками (128.36.23.3), можно подумать, что части имени соответствуют номерам в нотации с точками. Однако на самом деле между ними нет никакой связи.
Действительно, иногда системам локальной сети присваивают имена, которые выглядят как соответствующие иерархии адресов. Однако:
■ В той же локальной сети могут находиться имена, полностью нарушающие это правило.
■ Хосты со сходной структурой имен могут располагаться в различных локальных сетях или различных сетях других типов.
Для примера рассмотрим следующие имена и адреса:
macoun.cs.yale.edu 128.36.2.5
bulldog.cs.yale.edu 130.132.1.2
Адреса отражают сетевую точку подключения и ограничены в расположении, а имена систем, напротив, не зависят от физического подключения к сети.
Организации могут расширять свои домены именами, подобными chicago.sales.abc.com или newyork.sales.abc.com . Соответствующие компьютеры могут располагаться в указанных городах (Чикаго или Нью-Йорке).
Трафик направляется в системы на основе адресов, а не имен, и адрес системы всегда определяется перед отправкой на нее данных. Следовательно, организации свободны в выборе гибкой схемы именования, которая будет лучше удовлетворять заданным требованиям.
5.24 Протокол ARP
Перед тем как датаграмма будет передана с одной системы локальной сети на другую, она будет обрамлена заголовком и завершающей частью кадра. Кадр доставляется на сетевой адаптер, физический адрес которого совпадает с физическим адресом назначения из заголовка кадра.
Таким образом, для доставки датаграммы в локальной сети нужно определить физический адрес узла назначения.
Хорошо, что существует процедура автоматического определения физических адресов. Протокол разрешения адресов (Address Resolution Protocol — ARP) обеспечивает метод динамической трансляции между IP-адресом и соответствующим физическим адресом на основе широковещательных рассылок.
Система локальной сети самостоятельно использует ARP для исследования информации о физических адресах (сетевой администратор при необходимости может вручную ввести в таблицу ARP постоянный элемент для такой трансляции). Когда хосту нужно начать коммуникацию со своим локальным партнером, он ищет IP-адрес партнера в таблице ARP, которая обычно располагается в оперативной памяти. Если для нужного IP-адреса не находится требуемого элемента таблицы, хост посылает широковещательный запрос ARP, содержащий искомый IP-адрес назначения (см. рис. 5.14).

Рис. 5.14.Поиск физического адреса системы
Целевой хост узнает свой IP-адрес и читает запрос. После этого он изменяет собственную таблицу трансляции адресов, включая в нее IP-адрес и физический адрес отправителя широковещательной рассылки, и, наконец, посылает ответ, содержащий аппаратный адрес своего интерфейса.
Когда система-источник получает такой ответ, она обновляет свою таблицу ARP и становится готовой к пересылке данных по локальной сети.
5.24.1 Содержимое сообщения ARP
Запросы ARP первоначально использовались в локальных сетях Ethernet, но структура таких запросов имеет более общую природу, поэтому их можно применять и в Token-Ring, локальных сетях Fiber Distributed Data Interface (FDDI) или в глобальных сетях Switched Multimegabit Data Service (SMDS). Один из вариантов ARP был разработан для региональных сетей с виртуальными цепями (подобных Frame Relay).
Сообщение ARP помещается в поле данных кадра вслед за заголовком (заголовками) нижних уровней. Например, для Ethernet с кадрами DIX сообщение ARP следует за MAC-заголовком, а для сетей типа 802.3 или 802.5 — за MAC-заголовком, заголовком Logic Link Control (LLC) и подзаголовком Sub-Network Access Protocol (SNAP). Тип протокола для таких кадров (ARP через Ethernet) определяется кодом X'0806. В таблице 5.5 показаны поля сообщения ARP.
Таблица 5.5 Формат сообщения ARP
Количество октетов | Поле |
---|---|
2 | Тип аппаратного адреса |
2 | Протокол адресации высокого уровня |
1 | Длина аппаратного адреса |
1 | Длина адреса высокого уровня |
2 | Тип сообщения: 00 01 = запрос, 00 02 = ответ |
* | Аппаратный адрес источника |
* | Адрес высокого уровня (IP) источника |
* | Аппаратный адрес приемника |
* | Адрес высокого уровня (IP) приемника |
Длина последних четырех полей зависит от используемой технологии и применяемого протокола. Аппаратный адрес локальной сети 802.X содержит 6 октетов, а IP-адрес — 4 октета. В таблице 5.6 показаны примеры форматов сообщений, запрашивающих трансляцию IP-адресов в адреса Ethernet.
Таблица 5.6 Примеры сообщений для запросов ARP
Количество октетов | Поле | Описание |
---|---|---|
2 | 00 01 | Ethernet |
2 | 08 00 | IP |
1 | 06 | Длина физического адреса в 6 октетов для Ethernet |
1 | 04 | Длина физического адреса IP |
2 | 00 01 | Запрос |
6 | 02 07 01 00 53 23 | Аппаратный адрес источника |
4 | 80 24 04 12 | Адрес высокого уровня источника |
6 | 00 00 00 00 00 00 | Аппаратный адрес назначения |
4 | 80 24 04 0B | Адрес высокого уровня назначения |
При ответе меняются роли источника и приемника. Например, адресом высокого уровня источника в ответе на запрос станет X'80-24-04-0B.
Применение ARP не ограничивается только TCP/IP: во втором поле также можно указать протокол, использующий ARP.
Читать дальшеИнтервал:
Закладка: