Сидни Фейт - TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
- Название:TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
- Автор:
- Жанр:
- Издательство:Лори
- Год:2000
- Город:Москва
- ISBN:5-85582-072-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сидни Фейт - TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) краткое содержание
Второе издание популярного справочника полностью переработано и расширено с целью предоставить читателю наиболее полное описание средств разработки, конфигурирования, использования и обслуживания сетей TCP/IP и соответствующих служб.
Книга написана увлекательно и доступно. Она содержит дополнительные материалы о нескольких протоколах Интернета, используемых серверами и браузерами WWW, а также рассматривает все последние изменения в этой области. В книгу включены главы о новом стандарте безопасности IP и протоколе IP следующего поколения, известном как IPng или IPv6. Рисунки и таблицы наглядно показывают влияние средств безопасности IP и IPng на существующие сетевые среды.
Издание содержит следующие дополнительные разделы:
• Безопасность IP и IPv6
• Описание средств WWW, новостей Интернета и приложений для работы с gopher
• Подробное описание серверов имен доменов (DNS), маски подсети и бесклассовой маршрутизации в Интернете
• Таблицы и протоколы маршрутизации
• Руководство по реализации средств безопасности для каждого из протоколов и приложений
• Примеры диалогов с новыми графическими инструментами
Новое издание бестселлера по TCP/IP станет незаменимым помощником для разработчиков сетей и приложений, для сетевых администраторов и конечных пользователей.
TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
■ Когда датаграмма прибудет на маршрутизатор X, удаляется ее обрамление кадром. IP маршрутизатора X сравнивает IP-адрес назначения со всеми своими адресами (по маске подсети) и проверяет, не находится ли точка назначения в локально подключенной подсети.

Рис. 6.8.Глобальная маршрутизация
■ Если нет, IP выполнит поиск в таблице маршрутизации. Следующим попаданием станет маршрутизатор Y, куда и будет направлена датаграмма после обрамления ее новым кадром.
■ Когда датаграмма поступит на маршрутизатор Y, будет удалено обрамление кадром. Протокол IP маршрутизатора Y сравнит IP-адрес назначения со всеми своими адресами (по маске подсети) и проверит, не находится ли точка назначения в локально подключенной подсети. Для нашего примера поиск будет успешным и датаграмма будет послана хосту B.
Маршрут от хоста А к хосту В содержал три попадания (участка): A-X, X-Y и Y-B.
6.12 Возможности IP
В IP существует несколько возможностей, обеспечивающих гибкость и пригодность этого протокола к различным окружениям. Среди прочих следует упомянуть адаптивную маршрутизацию (adaptive routing), а также фрагментацию и сборку датаграммы (datagram fragmentation and reassembly).
6.12.1 Адаптивная маршрутизация
Маршрутизация датаграмм адаптивна по своей природе. Лучший вариант для следующего попадания в любом из устройств выполняется при поиске в таблице маршрутизации текущего сетевого узла. Записи таблицы маршрутизации могут изменяться с течением времени, отражая текущее состояние сети.
Если одна из связей (см. рис. 6.9) будет разорвана, датаграмма может переключиться на другой маршрут (если он будет доступен).

Рис. 6.9.Адаптивная маршрутизация
Изменение в топологии сети приводит к автоматическому перенаправлению датаграммы по другому маршруту. Адаптивная маршрутизация характеризуется гибкостью и надежностью.
С другой стороны, заголовок IP может содержать точный маршрут для перемещения к точке назначения. Это позволяет маршрутизировать важный трафик по засекреченному сетевому пути.
6.12.2 MTU, фрагментация и сборка
Перед тем как датаграмма отправится по сети к участку следующего попадания, она инкапсулируется внутри заголовка (заголовков) второго уровня, требующегося для данной сетевой технологии (см. рис. 6.10). Например, для прохождения сети 802.3 или 802.5 добавляются: заголовок LLC, подзаголовок SNAP, MAC-заголовок и завершающая часть MAC.

Рис. 6.10.Формат пересылки кадра локальной сети
Как было показано в главе 4, каждая технология локальной или глобальной сети имеет собственные ограничения на длину кадров. Датаграмма должна размещаться внутри кадра, и, следовательно, его максимальная длина будет ограничивать размер датаграммы, пересылаемой по носителю.
Максимальная длина датаграммы для конкретного носителя вычисляется как разность максимального размера кадра, длины заголовка кадра, длины завершающей части кадра и размера заголовка уровня связи данных:
Максимальный размер кадра – длина заголовка кадра – длина завершающей части кадра – размер заголовка уровня связи данных
Максимально возможная длина датаграммы в заданном носителе называется максимальным элементом пересылки (Maximum Transmission Unit — MTU). Например, для DIX Ethernet значение MTU равно 1500 октетам, для 802.3 — 1492 октетам, для FDDI — 4352, для SMDS — 9180 октетам.
В больших сетях интернета хост источника может не знать размеров всех ограничений по пути пересылки датаграммы. Что же произойдет, если хост отправит слишком большую для одной из промежуточных сетей датаграмму?
Когда такая датаграмма достигнет маршрутизатора, подключенного к промежуточной сети, IP решит проблему с размером датаграммы, разделив ее на несколько небольших фрагментов. Хост назначения далее должен будет провести сборку всех полученных кадров и восстановить исходную датаграмму.
Фрагментация наиболее часто выполняется в маршрутизаторах, однако приложения UDP могут разделить длинное сообщение на фрагменты датаграмм сразу в хосте источника.
6.13 Механизмы протокола IP
Рассмотрим более детально характеристики протокола IP версии 4, в том числе элементы формата этого протокола — формат заголовка IP и правила управления датаграммой, пересылаемой по сети. Протокол IP версии 6 рассмотрен в главе 22 (IP версии 5 не существует).
6.13.1 Заголовок датаграммы
Заголовок датаграммы организован как 5 или более 32-разрядных слов . Максимальная длина заголовка — 15 слов (т.е. 60 октетов), но на практике большинство заголовков датаграмм имеют минимально возможную длину в 5 слов (20 октетов).
Поля заголовка показаны на рис. 6.11. Они структурированы как последовательность слов. Отметим, что биты слов пронумерованы от 0 до 31.

Рис. 6.11.Формат датаграммы протокола IP
6.13.2 Поля назначения, поле источника и поле протокола
Наиболее важными полями заголовка являются: Destination IP Address (IP-адрес назначения), Source IP Address (IP-адрес источника) и Protocol (протокол).
IP-адрес назначения позволяет маршрутизировать датаграмму. Как только она достигает точки назначения, поле протокола позволяет доставить ее в требуемую службу, подобную TCP или UDP, Кроме TCP и UDP, существует еще несколько протоколов, способных посылать и получать датаграммы. Организация IANA отвечает за координацию присваивания значений параметрам TCP/IP, включая значения в поле протокола . Некоторые значения из этого поля имеют лицензионный, специфичный для конкретного производителя смысл.
В таблице 6.1 показаны наиболее распространенные значения из поля протокола .
Таблица 6.1 Общепринятые номера из поля протокола заголовка IP
Номер | Название | Протокол | Описание |
---|---|---|---|
1 | ICMP | Internet Control Message Protocol | Переносит сообщения об ошибках и поддерживает отдельные сетевые утилиты |
2 | IGMP | Internet Group Management Protocol | Обеспечивает группы для многоадресных рассылок |
6 | TCP | Transmission Control Protocol | Обслуживает сеансы |
8 | EGP | Exterior Gateway Protocol | Устаревший протокол для маршрутизации во внешней сети |
17 | UDP | User Datagram Protocol | Обслуживает доставку независимых блоков данных |
88 | IGRP | Interior Gateway Routing Protocol | Обеспечивает взаимный обмен информацией о маршрутизации между маршрутизаторами компании Cisco |
6.13.3 Версия, длина заголовка и длина датаграммы
Интервал:
Закладка: