Олег Цилюрик - QNX/UNIX: Анатомия параллелизма
- Название:QNX/UNIX: Анатомия параллелизма
- Автор:
- Жанр:
- Издательство:Символ-Плюс
- Год:2006
- Город:Санкт-Петербург
- ISBN:5-93286-088-Х
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Цилюрик - QNX/UNIX: Анатомия параллелизма краткое содержание
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
QNX/UNIX: Анатомия параллелизма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• SIGXCPU [30]
— сигнал о превышении лимита процессорного времени (CPU time limit exceeded). Посылается процессу при исчерпании им ранее установленного лимита процессорного времени. Действие по умолчанию — аварийное завершение.
• SIGXFSZ [31]
— сигнал о превышении предела, установленного на размер файла (file size limit exceeded). Действие по умолчанию — аварийное завершение.
• SIGWINCH [20]
— сигнал, который генерируется (в консольном режиме pterm
и xterm
эмулируют его вручную при изменении их размеров) при изменении размера окна (window size change) для запущенного в окне приложения (mc, mqc…), чтобы оно перерисовало свой экран вывода.
В QNX определено еще два специфических сигнала, которые вряд ли должны представлять для нас интерес:
• SIGIOT [6]
— IOT-инструкция; никогда не генерируется для платформы x86.
• SIGPWR [19]
— сигнал power-fail restart о котором в технической документации QNX ничего не говорится, но в преамбуле, описывающей нововведения версии 6.2.1, сказано: «corrected SIGPWR to SIGTERM», то есть этот сигнал, очевидно, — рудимент прежних версий системы.
POSIX допускает, что не все сигналы могут быть реализованы. Более того, допускается ситуация, когда некоторое символическое имя сигнала определено, но сам сигнал отсутствует в системе (изменения такого рода вполне могут наблюдаться при переходе от одной версии QNX к другой). Для диагностики реального наличия сигнала можно воспользоваться рекомендацией, приведенной в информативной части стандарта POSIX 1003.1: наличие поддержки сигнала сообщает вызов функции sigaction()
с аргументами act
и oact
, установленными в NULL
. Приведем простейший тест ( файл s1.cc ), реализующий рекомендацию POSIX в QNX 6.2.1:
#include
#include
#include
#include
int main(int argc, char *argv[]) {
cout << "SIGNO";
for (int i = _SIGMIN; i <= _SIGMAX; i++) {
if (i % 8 == 1) cout << endl << i << ':';
int res = sigaction(i, NULL, NULL);
cout << '\t' << ((res != 0 && errno == EINVAL) ? '-' : '+');
}
cout << endl;
return EXIT_SUCCESS;
}
И результат его выполнения:
SIGNO
1: + + + + + + + +
9: + + + + + + + +
17: + + + + + + + +
25: + + + + + + + +
33: + + + + + + + +
41: + + + + + + + +
49: + + + + + + + +
57: - - - - - - - -
Система «считает» все сигналы 1…56 реализуемыми, а последние 8 специфических сигналов QNX, как упоминалось выше, не допускают применения к ним sigaction()
. Здесь с учетом цитировавшейся выше раскладкой сигналов QNX есть небольшая загадка: максимальным номером POSIX-сигнала, определенного в , является 31 ( SIGXFSZ
– 31); там же в комментарии есть фраза: «допустимый диапазон пользовательских сигналов — от 1 до 56, используемых ядром — от 57 до 64». Непонятно, в каком качестве используются сигналы 32–40, непосредственно предшествующие сигналам реального времени (41–56) и диагностируемые sigaction()
как действительные (valid)? Позже мы увидим, что они обслуживаются системой наравне с документированными сигналами.
Традиционная обработка сигнала
В этой части изложения мы рассмотрим традиционные модели перехвата сигналов и установки для них собственных обработчиков (в том числе и игнорирование или восстановление стандартной обработки по умолчанию). Термин «традиционный» здесь означает, что мы бегло рассмотрим обработку сигналов применительно к процессам и стандартным сигналам UNIX (не сигналам реального времени), то есть в том изложении, как она традиционно рассматривается в литературе по UNIX (и здесь сигнал воспринимается, конечно же, единственным потоком приложения, а не процессом, но в этом случае различие не принципиально). Позже мы рассмотрим модель обработки сигналов реального времени и расширим ее на многопоточные приложения.
«Старая» модель обработки сигнала
В ранних версиях UNIX была принята единственная модель обработки сигналов, основанная на функции signal()
, которая подразумевает семантику так называемых «ненадежных сигналов», принятую в этих ОС. Позже эта модель была подвержена радикальной критике, вскрывшей ее «ненадежность». Данная модель сохранена для совместимости с ранее разработанным программным обеспечением. Она обладает существенными недостатками, основными из которых являются:
• процесс не может заблокировать сигнал, то есть отложить получение сигнала на период выполнения критических участков кода;
• каждый раз при получении сигнала его диспозиция устанавливается на действие по умолчанию, и при необходимости продолжить обработку поступающих сигналов требуется повторно восстанавливать требуемый обработчик.
Вот пример ( файл s2.cc ) использования этой модели в коде, который уже стал иллюстративным образцом и кочует из одного источника в другой:
#include
#include
#include
// обработчик сигнала SIGINT
static void handler(int signo) {
// восстановить обработчик:
signal(SIGINT, handler);
cout << "Получен сигнал SYSINT" << endl;
}
int main() {
// устанавливаются диспозиции сигналов:
signal(SIGINT, handler);
signal(SIGSEGV, SIG_DFL);
signal(SIGTERM, SIG_IGN);
while(true) pause();
}
Макросы SIG_DFL
и SIG_IGN
определяются так:
#define SIG_ERR (( void(*)(_SIG_ARGS))-1 )
#define SIG_DFL (( void(*)(_SIG_ARGS))0)
#define SIG_IGN (( void(*)(_SIG_ARGS))1)
#define SIG_HOLD (( void(*)(_SIG_ARGS))2)
где _SIG_ARGS
— это фактически тип int
. SIG_DFL
и SIG_IGN
устанавливают диспозиции сигнала «по умолчанию» и «игнорировать» соответственно, а о SIG_HOLD
мы будем отдельно говорить позже.
Выполнение этой программы вам будет не так просто прекратить: на комбинацию завершения [Ctrl+C] она отвечает сообщением о получении сигнала... и все. Воспользуемся для этого посылкой программе опять же сигнала, но из другого процесса (другого экземпляра командного интерпретатора). Смотрим PID запущенного процесса:
# pidin
...
220//86 1 /s2 10 r STOPPED
...
И посылаем процессу сигнал завершения:
# kill -9 2207786
или kill -SIGKILL 2207786
Таким же образом, как показано командой kill
, мы будем посылать сигналы процессам «извне» и в описываемых далее тестах, не останавливаясь подробно, как это происходит, в том числе и для сигналов реального времени (41…56).
Предыдущий пример можно переписать ( файл s4.cc ) для обеспечения часто требуемой на практике защиты от немедленного прерывания выполнения по [Ctrl+C], чтобы дать программе возможность выполнить все требуемые операции по завершению (сбросить буферы данных на диск, закрыть файлы, сокеты и другие используемые объекты):
Читать дальшеИнтервал:
Закладка: