Андрей Робачевский - Операционная система UNIX
- Название:Операционная система UNIX
- Автор:
- Жанр:
- Издательство:BHV - Санкт-Петербург
- Год:1997
- Город:Санкт-Петербург
- ISBN:5-7791-0057-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Робачевский - Операционная система UNIX краткое содержание
Книга посвящена семейству операционных систем UNIX и содержит информацию о принципах организации, идеологии и архитектуре, объединяющих различные версии этой операционной системы.
В книге рассматриваются: архитектура ядра UNIX (подсистемы ввода/вывода, управления памятью и процессами, а также файловая подсистема), программный интерфейс UNIX (системные вызовы и основные библиотечные функции), пользовательская среда (командный интерпретатор shell, основные команды и утилиты) и сетевая поддержка в UNIX (протоколов семейства TCP/IP, архитектура сетевой подсистемы, программные интерфейсы сокетов и TLI).
Для широкого круга пользователей
Операционная система UNIX - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Максимальный объем памяти для хранения параметров и переменных окружения программы ограничен величиной ARG_MAX
, определенной в файле . Это и другие системные ограничения могут быть получены с помощью функции sysconf(2) .
Для получения и установки значений конкретных переменных окружения используются две функции: getenv(3C) и putenv(3C) :
#include
char *getenv(const char *name);
возвращает значение переменной окружения name
, a
int putenv(const char *string);
помещает переменную и ее значение ( var_name=var_value
) в окружение программы.
В качестве примера приведем программу, похожую по своей функциональности на предыдущую, которая выборочно выводит значения переменных и устанавливает новые значения по желанию пользователя.
#include
#include
#include
main(int argc, char *argv[]) {
char *term;
char buf[200], var[200];
/* Проверим, определена ли переменная TERM */
if ((term = getenv("TERM")) == NULL)
/* Если переменная не определена, получим от пользователя ее значение и
поместим переменную в окружение программы */
{
printf("переменная TERM не определена, введите значение: ");
putenv(var);
} else
/* Если переменная TERM определена, предоставим пользователю возможность
изменить ее значение, после чего поместим ее в окружение процесса */
{
printf("TERM=%s. Change? [N]", getenv("TERM"));
gets(buf);
if (buf[0] == 'Y' || buf[0] == 'y') {
printf("TERM=");
gets{buf);
sprintf(var, "TERM=%s", buf);
putenv(var);
printf("new %s\n", var);
}
}
}
Сначала программа проверяет, определена ли переменная TERM
. Если переменная TERM
не определена, пользователю предлагается ввести ее значение. Если же переменная TERM
определена, пользователю предлагается изменить ее значение, после чего новое значение помещается в окружение программы.
Запуск этой программы приведет к следующим результатам:
$ а.out
TERM=ansi. Change? [N] y
TERM= vt100
new TERM=vt100
$
К сожалению, введенное значение переменной будет действительно только для данного процесса и порожденных им процессов: если после завершения программы a.outвывести значение TERM
, то видно, что оно не изменилось:
$ echo $TERM
ansi
$
Наследование окружения программы мы обсудим в разделе "Создание и управление процессами" далее в этой главе.
Переменные окружения, как и параметры, позволяют передавать программе некоторую информацию. Однако если программа является интерактивной, основную информацию она, скорее всего, будет получать непосредственно от пользователя. В связи с этим встает вопрос: каким образом программа узнает, где находится пользователь, чтобы правильно считывать и выводить информацию? Другими словами, программе необходимо знать, с каким терминальным устройством работает пользователь, запустивший ее.
Обычно при запуске программы на выполнение из командной строки shell автоматически устанавливает для нее три стандартных потока ввода/вывода: для ввода данных, для вывода информации и для вывода сообщений об ошибках. Начальную ассоциацию этих потоков (их файловых дескрипторов) с конкретными устройствами производит терминальный сервер (в большинстве систем это процесс getty(1M) ), который открывает специальный файл устройства, связанный с терминалом пользователя, и получает соответствующие дескрипторы. Эти потоки наследует командный интерпретатор shell и передает их запускаемой программе. При этом shell может изменить стандартные направления (по умолчанию все три потока связаны с терминалом пользователя), если пользователь указал на это с помощью специальных директив перенаправления потока (>, <, >>, <<) см. главу 1, раздел "Пользовательская среда UNIX"). Раздел "Группы и сеансы" внесет окончательную ясность в этот вопрос при описании управляющего терминала.
Такой механизм позволяет программисту не задумываться о местонахождении пользователя, и в то же время обеспечить получение и передачу данных именно запустившему данную программу пользователю.
Завершая разговор о запуске программ, заметим, что при компиляции программы редактор связей устанавливает точку входа в программу, указывающую на библиотечную функцию _start() . Эта функция инициализирует процесс, создавая кадр стека, устанавливая значения переменных и, в конечном итоге, вызывая функцию main() .
Завершение C-программы
Существует несколько способов завершения программы. Основными являются возврат из функции main() [17] Начальная функция запуска программы на выполнение _start() написана таким образом, что exit(2) вызывается автоматически при возврате из функции main() . В языке С она имеет следующий вид: exit(main(argc, argv)) .
и вызов функций exit(2) , оба приводят к завершению выполнения задачи. Заметим, что процесс может завершиться по не зависящим от него обстоятельствам, например, при получении сигнала, действие по умолчанию для большинства из которых приводит к завершению выполнения процесса [18] В английском языке такое завершение выполнения называется более откровенно — "убийство процесса".
(см. раздел "Сигналы" далее в этой главе). В этом случае функция exit(2) будет вызвана ядром от имени процесса.
Системный вызов exit(2) выглядит следующим образом:
#include
void exit(int status);
Аргумент status
, передаваемый функции exit(2) , возвращается родительскому процессу и представляет собой код возврата программы. По соглашению программа возвращает 0 в случае успеха и другую величину в случае неудачи. Значение кода неудачи может иметь дополнительную трактовку, определяемую самой программой. Например, программа grep(1) , выполняющая поиск заданных подстрок в файлах, определяет следующие коды возврата:
0 | совпадение было найдено |
1 | совпадений найдено не было |
2 | синтаксическая ошибка или недоступны файлы поиска |
Наличие кода возврата позволяет программам взаимодействовать друг с другом. Например, следующая программа (назовем ее fail) может являться условием неудачи и использоваться в соответствующих синтаксических конструкциях shell:
main() {
exit(1);
}
$ fail
$ echo $?
Выведем код возврата программы fail
1
$ fail || echo fail
Конструкция shell, использующая условие неудачи fail
fail
Помимо передачи кода возврата, функция exit(2) производит ряд действий, в частности выводит буферизованные данные и закрывает потоки ввода/вывода. Альтернативой ей является функция _exit(2) , которая не производит вызовов библиотеки ввода/вывода, а сразу вызывает системную функцию завершения ядра. Более подробно о процедурах завершения процесса см. раздел "Создание и управление процессами".
Читать дальшеИнтервал:
Закладка: