Брайан Керниган - UNIX — универсальная среда программирования

Тут можно читать онлайн Брайан Керниган - UNIX — универсальная среда программирования - бесплатно ознакомительный отрывок. Жанр: comp-osnet, издательство Финансы и статистика, год 1992. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    UNIX — универсальная среда программирования
  • Автор:
  • Жанр:
  • Издательство:
    Финансы и статистика
  • Год:
    1992
  • Город:
    Москва
  • ISBN:
    5-289-00253-4
  • Рейтинг:
    5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Брайан Керниган - UNIX — универсальная среда программирования краткое содержание

UNIX — универсальная среда программирования - описание и краткое содержание, автор Брайан Керниган, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.

Для программистов-пользователей операционной системы UNIX.

UNIX — универсальная среда программирования - читать онлайн бесплатно ознакомительный отрывок

UNIX — универсальная среда программирования - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Брайан Керниган
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As is always the case with floating point numbers,

equality comparisons are inherently suspect. .PP

.I Hoc

also has a few built-in constants, shown in Table 3.

.TS

center, box;

c s s

lfCW n l.

\fBTable 3:\fP Built-in Constants

.sp .5

DEG 57.29577951308232087680 @180/ pi@, degrees per radian

E 2.71828182845904523536 @e@, base of natural logarithms

GAMMA 0.57721566490153286060 @gamma@, Euler-Mascheroni constant

PHI 1.61803398874989484820 @( sqrt 5 +1)/2@, the golden ratio

PI 3.14159265358979323846 @pi@, circular transcendental number

.ТЕ

.ix table~of [hoc] constants

.NH

Statements and Control Flow

.PP

.I Hoc

statements have the following grammar:

.DS

.I

stmt: expr

| variable = expr

| procedure ( arglist )

| while ( expr ) stmt

| if ( expr ) stmt

| if ( expr ) stmt else stmt

| { stmtlist }

| print expr-list

| return optional-expr

stmtlist: \fR(nothing)\fI

| stmlist stmt

.R

.DE

An assignment is parsed by default as a statement rather than

an expression, so assignments typed interactively

do not print their value.

.PP

Note that semicolons are not special to

.ix [hoc] input~format

@hoc@: statements are terminated by newlines.

This causes some peculiar behavior.

The following are legal

.IT if

statements:

.DS

.ft CW

if (x < 0) print(y) else print(z)

if (x < 0) {

print(y)

} else {

print(z)

}

.ft

.DE

In the second example, the braces are mandatory:

the newline after the

.I if

would terminate the statement and produce a syntax error were

the brace omitted.

.PP

The syntax and semantics of @hoc@

control flow facilities are basically the same as in C.

The

.I while

and

.I if

statements are just as in C, except there are no @break@ or

@continue@ statements.

.NH

Input and Output: @read@ and @print@

.PP

.ix [hoc] [read]~statement

.ix [hoc] [print]~statement

The input function @read@, like the other built-ins,

takes a single argument. Unlike the built-ins, though, the argument

is not ал expression: it is the name of a variable.

The next number (as defined above) is read from the standard input

and assigned to the named variable.

The return value of @read@ is 1 (true) if a value was read, and 0 (false)

if @read@ encountered end of file or an error.

.PP

Output is generated with the ©print© statement.

The arguments to @print@ are a comma-separated list of expressions

and strings in double quotes, as in C.

Newlines must be supplied;

they are never provided automatically by @print@.

.PP

Note that @read@ is a special built-in function, and therefore takes

a single parenthesized argument, while @print@ is a statement that takes

a comma-separated, unparenthesized list:

.DS

.ft CW

while (read(x)) {

print "value is ", x, "\n"

}

.ft

.DE

.NH

Functions and Procedures

.PP

Functions and procedures are distinct in @hoc@,

although they are defined by the same mechanism.

This distinction is simply for run-time error checking:

it is an error for a procedure to return a value,

and for a function @not@ to return one.

.PP

The definition syntax is:

.ix [hoc] function~definition

.ix [hoc] procedure~definition

.DS

.I

.ta 1i

function: func name() stmt

procedure: proc name() stmt

.R

.DE

.I name

may be the name of any variable \(em built-in functions are excluded.

The definition, up to the opening brace or statement,

must be on one line, as with the

.I if

statements above.

.PP

Unlike C,

the body of a function or procedure may be any statement, not

necessarily a compound (brace-enclosed) statement.

Since semicolons have no meaning in @hoc@,

a null procedure body is formed by an empty pair of braces.

.PP

Functions and procedures may take arguments, separated by commas,

when invoked. Arguments are referred to as in the shell:

.ix [hoc] arguments

.IT $3

refers to the third (1-indexed) argument.

They are passed by value and within functions

are semantically equivalent to variables.

It is an error to refer to an argument numbered greater than the

number of arguments passed to the routine. The error checking

is done dynamically, however, so a routine may have variable numbers

of arguments if initial arguments affect the number of arguments

to be referenced (as in C's @printf@).

.PP

Functions and procedures may recurse, but the stack has limited depth

(about a hundred calls). The following shows a

.I

hoc

definition of Ackermann's function:

.ix Ackermann's~function

.DS

.ft CW

.ix [ack]~function

.S $ "hoc

.S "func ack() {

.S " if ($1 == 0) return $2+1

.S " if ($2 == 0) return ack($1-1, 1)

.S " return ack($1-1, ack($1, $2-1))

.S "}

.S "ack(3, 2)

29

.S "ack(3, 3)

61

.S "ack(3, 4)

hoc: stack too deep near line 8

\&...

.ft

.DE

.bp

.NH

Examples

.PP

Stirling's~formula:

.ix Stirling's~formula

.EQ

n! ~\(ap~ sqrt {2n pi} (n/e) sup n (1+ 1 over 12n )

.EN

.DS

.ft CW

.S $ hoc

.S "func stirl() {

.S " return sqrt(2*$1*PI) * ($1/E)"$1*(1 + 1/(12*$1)) .S "}

.S "stirl(10)

3628684.7

.S stirl(20)

2.4328818e+18

.ft R

.DE

.PP

Factorial function, @n!@:

.ix [fac]~function

.DS

. S "func fac() if ($1 <= 0) return 1 else return $1 * fac($1-1)

.ft R

.DE

.PP

Ratio of factorial to Stirling approximation:

.DS

.S "i = 9

.S "while ((i = i+1) <= 20) {

.S \ \ \ \ \ \ \ \ print\ i,\ "\ \ ",\ fac(i)/stirl(i),\ "\en"

.S "} .ft CW

10 1.0000318

11 1.0000265

12 1.0000224

13 1.0000192

14 1.0000166

15 1.0000146

16 1.0000128

17 1.0000114

18 1.0000102

19 1.0000092

20 1.0000083

.ft

.DE

3.7.14 hoc.y

%{

#include "hoc.h"

#define code2(c1,c2) code(c1); code(c2)

#define code3(c1,c2,c3) code(c1); code(c2); code(c3)

%}

%union {

Symbol *sym; /* symbol table pointer */

Inst *inst; /* machine instruction */

int narg; /* number of arguments */

}

%token NUMBER STRING PRINT VAR BLTIN UNDEF WHILE IF ELSE

%token FUNCTION PROCEDURE RETURN FUNC PROC READ

%token ARG

%type expr stmt asgn prlist stmtlist

%type cond while if begin end

%type procname

%type arglist

%right '='

%left OR

%left AND

%left GT GE LT LE EQ NE

%left '+' '-' %left '/'

%left UNARYMINUS NOT

%right '^'

%%

list: /* nothing */

| list '\n'

| list defn '\n'

| list asgn '\n' { code2(pop, STOP); return 1; }

| list stmt '\n' { code(STOP); return 1; }

| list expr '\n' { code2(print, STOP); return 1; }

| list error '\n' { yyerrok; }

;

asgn: VAR '=' expr { code3(varpush,(Inst)$1,assign); $$=$3; }

| ARG '=' expr

{ defnonly("$"); code2(argassign,(Inst)$1); $$=$3;}

;

stmt: expr { code(pop); }

| RETURN { defnonly("return"); code(procret); }

| RETURN expr

{ defnonly("return"); $$=$2; code(funcret); }

| PROCEDURE begin '(' arglist ')'

{ $$ = $2; code3(call, (Inst)$1, (Inst)$4); }

| PRINT prlist { $$ = $2; }

| while cond stmt end {

($1)UID = (Inst)$3; /* body of loop */

($1)[2] = (Inst)$4;

} /* end, if cond fails */

| if cond stmt end { /* else-less if */

($1)[1] = (Inst)$3; /* thenpart */

($1)[3] = (Inst)$4;

} /* end, if cond fails */

| if cond stmt end ELSE stmt end { /* if with else */

($1)[1] = (Inst)$3; /* thenpart */

($1)[2] = (Inst)$6; /* elsepart */

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Брайан Керниган читать все книги автора по порядку

Брайан Керниган - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




UNIX — универсальная среда программирования отзывы


Отзывы читателей о книге UNIX — универсальная среда программирования, автор: Брайан Керниган. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x